Show simple item record

dc.contributor.authorKarakaş, Murat
dc.date.accessioned2024-02-05T11:35:24Z
dc.date.available2024-02-05T11:35:24Z
dc.date.issued2021
dc.identifier.issn2146-7706
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/123456789/13899
dc.description.abstractThe main purpose of this paper is first to establish a new regular matrix by using one of the important sequences of integer number called Tribonacci-Lucas. Also, we class this new Tribonacci-Lucas matrix with some well-known summability methods such as Riesz means, Nörlund means and Cesaro means. To do this, we show that the Tribonacci-Lucas matrix is a regular summability method and in addition to this, we give some inclusion results and finally prove that Cesaro matrix is stronger than the Tribonacci-Lucas matrix.tr_TR
dc.language.isoEnglishtr_TR
dc.publisherBitlis Eren Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectTribonacci-Lucas numberstr_TR
dc.subjectFibonacci numberstr_TR
dc.subjectToeplitz matrixtr_TR
dc.subjectSummability methodtr_TR
dc.titleSome inclusion results for the new Tribonacci-Lucas matrixtr_TR
dc.typeArticletr_TR
dc.identifier.issue2tr_TR
dc.identifier.startpage76tr_TR
dc.identifier.endpage81tr_TR
dc.relation.journalBitlis Eren University Journal of Science and Technologytr_TR
dc.identifier.volume11tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record