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Abstract 

Ensuring worker safety in high-risk environments such as construction sites is 

paramount. Personal protective equipment, particularly helmets, is critical in 

preventing severe head injuries. This study aims to develop an automated helmet 

detection system using the state-of-the-art YOLOv8 deep learning model to enhance 

real-time safety monitoring. The dataset used for the analysis consists of 16,867 

images, with various data augmentation and preprocessing techniques applied to 

improve the model's robustness. The YOLOv8 model achieved a 96.9% mAP50 

score, outperforming other deep learning models in similar studies. The results 

demonstrate the effectiveness of the YOLOv8 model for accurate and efficient 

helmet detection in construction sites, paving the way for improved safety monitoring 

and enforcement in the construction industry. 
 

 
1. Introduction 

 

The construction industry is one of the high-risk 

working environments where employee safety is a 

priority. Construction sites are inherently hazardous, 

with high accident and injury potential. Strict 

adherence to safety regulations, including the 

mandatory use of personal protective equipment 

(PPE), is crucial to ensuring employee safety and 

minimizing risks. Helmets are critical in protecting 

workers from head injuries that can have serious 

consequences, including permanent disability and 

even death. The rapid development of information 

technologies impacts every aspect of our lives and 

various business processes. Their automatic and quick 

response in detection, recognition, and decision-

making processes has become integral to data 

management. In this era of rapidly increasing data, 

deep learning algorithms are essential for decision-

making and process management. 

 Construction sites are inherently hazardous 

environments with high accident and injury potential 

[1]. Strict adherence to safety regulations, including 

the mandatory use of personal protective equipment 
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(PPE), is important to ensure worker safety and 

minimize risks [2]. Helmets are critical in protecting 

workers from head injuries that can lead to serious 

consequences, including permanent disability and 

death [3]. Inadequate site inspections and low safety 

awareness among construction workers can lead to 

accidents. Real-time detection of helmet use is crucial 

for rapid action and prevention of such incidents [4]. 

As computer technology has advanced, 

automatic visual detection has become increasingly 

prevalent. The growth of deep learning-based 

computer vision technologies has opened new 

possibilities for enhancing safety monitoring and 

enforcement across various sectors, including 

construction [5]. Deep learning-based object 

detection algorithms, such as Convolutional Neural 

Networks (CNN) and YOLO architectures, have 

demonstrated promising outcomes in diverse areas 

like traffic monitoring, pedestrian detection, and 

facial recognition [6], [7]. Numerous studies have 

focused on detecting helmet usage [8]- [17]. The 

ongoing progress in deep learning-based computer 

vision technologies continues to enhance safety 
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monitoring and enforcement within the construction 

sector and beyond. 

In the study by Hayat & Morgado-Dias [3], 

they employed a benchmark dataset of 5,000 helmet 

images, divided into 60%, 20%, and 20% portions for 

training, testing, and validation, respectively. The 

findings revealed that the YOLOv5x architecture was 

the top performer, achieving an impressive average 

accuracy (mAP) of 92.44%. This demonstrates the 

model's effectiveness in detecting safety helmets, 

even under challenging low-light conditions. 

In a study by Yung et al. [18], the researchers 

evaluated the performance of three deep learning 

algorithms (YOLOv5, YOLOv6, and YOLOv7) in 

detecting safety helmets through a series of three 

tests. YOLOv6s and YOLOv7 models demonstrated 

superior performance in low light conditions 

compared to the YOLOv5s model. However, it was 

noted that only some models could differentiate 

between regular and safety helmets. Ultimately, 

YOLOv7 emerged as the best performer, achieving 

the highest mAP of 89.6% in detecting protective 

helmets. 

In a study by Otgonbold et al. [19], the 

researchers developed a helmet detection model using 

a dataset of six classes: helmet, head, helmeted head, 

helmeted person, helmetless person, and face. The 

study employed several algorithms, including 

YOLOv3 (YOLOv3, YOLOv3-tiny, and YOLOv3-

SPP), YOLOv4 (YOLOv4 and YOLOv4pacsp-x-

mish), YOLOv5-P5 (YOLOv5s, YOLOv5m, and 

YOLOv5x), Faster Region-Based Convolutional, and 

YNOL. The results showed that Faster-RCNN 

(Region-based Convolutional Neural Network) 

achieved the lowest mAP of 36.89, while the YOLOR 

model attained the highest mAP value of 88.28. 

In a study by Chen et al. [20], the researchers 

aimed to achieve real-time and efficient helmet-

wearing detection by utilizing a developed YOLOv4 

algorithm. The results revealed that the algorithm 

achieved an accuracy of 92.98%, a model size of 

41.88 M, and a detection speed of 43.23 images per 

second. Compared to the original YOLOv4, there was 

an increase in accuracy by 0.52%, a reduction in 

model size by approximately 83%, and an 88% 

improvement in detection speed. 

 
Table 1. Success rates of Yolo and DL applications for helmet classification 

Authors  Dataset  Applied Models Results (mAP50-%) 

[14] 13,000 images  SSD, Faster R-CNN, YOLOv3, and Improved 

YOLOv3 

77.2, 94.3, 82.3 and 93.1 

[12] 3261 images  SSD-MobileNet 36.8 

[21] 13620 images  AT-YOLO + DIOU 96.5 

[22] 1365 images  YOLOv2 98,52 

[17] 2580 images  SCM-YOLO 93.19 

[23] 5000 images  YOLO 97.12 

[24] 7008 images  YOLO 95 

[25] 7581 images  YOLOv5 93 

[26] 3000 images  Faster R-CNN, SSD, YOLO v3, YOLO v4 and 

YOLO v4-HelMask 

70.62, 89.72, 90.54, 

93.19 and 95.51 

 

This recent literature review underscores the 

effectiveness of various object detection models 

across diverse datasets. Studies [14, 12, 21, 22, 17, 23, 

24, 25, 26] employed a range of models from SSD and 

Faster R-CNN to multiple versions of YOLO, 

including standard and modified variants such as AT-

YOLO, YOLOv2, SCM-YOLO, and YOLOv4-

HelMask. Despite the varying dataset sizes (ranging 

from 1,365 to 13,620 images), the results in terms of 

mAP50%, a standard metric indicating the model's 

precision, were generally high. YOLO and its 

variations consistently performed well, with a notably 

high mAP50% of 98.52 achieved by YOLOv2 on a 

dataset of 1,365 images [22]. SSD-MobileNet yielded 

the lowest mAP50% of 36.8 [12], possibly due to 

various factors, including dataset size and task 

complexity. These findings underscore the potency of 

YOLO and its variants in object detection tasks and 

suggest that considerations of dataset size, data 

quality, model selection, and task complexity are 

critical to optimizing model performance. 

Conventional manual monitoring methods 

can be labor-intensive, subject to human error, and 

often inadequate for covering extensive construction 
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sites. To address these drawbacks, this study 

investigates the use of deep learning approaches to 

create an automatic helmet detection system. This 

system aims to detect workers wearing helmets 

effectively and accurately in real-time, using cameras 

at construction sites. 

 

2. Material and Method 

 

In this study, deep learning approaches and image 

processing methods are used to ensure human safety 

by detecting whether a person is wearing a helmet. 

The deep learning-based image processing method is 

the YOLOv8 (You Only Look Once) model, a state-

of-the-art object detection algorithm known for its 

real-time processing capabilities and accuracy. The 

weights of the YOLOv8 model were pre-trained using 

millions of images from the ImageNet dataset, 

providing a solid foundation for transfer learning and 

fine-tuning the model for the specific helmet 

detection task. 

 

2.1. Data Set 

 

This study aims to identify the presence of helmets 

and verify if individuals are wearing them to enhance 

safety on construction sites. A dataset of 7036 images 

was used to accomplish this objective, featuring 

categories such as humans, human heads, and helmets 

[27]. These images were gathered from the Mendeley 

[27] websites and underwent preprocessing to ensure 

they were appropriate for use in the research. An 

example view of the dataset is given in Figure 1. 

 

 

Figure 1. Sample images of the dataset. 

 

Features of the dataset used include: 

• A total of 7036 images, upscaled to 16867 images 

using various data augmentation techniques. 

• Images accessible to everyone were selected for the 

data set. 

• The target classes of images in the dataset were 

selected from different lighting conditions and 

environments to provide a more robust model. 

• Various preprocessing techniques were applied to 

each image in the dataset, focusing on data 

augmentation, resulting in a threefold increase in 

dataset size. 
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• The dataset is divided into 14674 training images, 

1349 validation images, and 844 test images for use in 

experimental studies. 

 

Data set augmentation studies: 

• Set to 3 printouts per training sample. In other words, 

three images were obtained from each image. 

• Horizontal directional flip operation has been 

performed. 

• Crop: 0% Minimum Zoom, 20% Maximum Zoom 

applied. 

• Rotation: Applied from -10° to +10°. 

• Grayscale: Applied to 10% of images. 

• Hue: Applied between -20° and +20°. 

• Saturation: -25% to +25% applied. 

• Brightness: -20% to +20% applied. 

• Exposure: -20% to +20% applied. 

• Blur: Applied up to 1 pixel. 

• Cutting: 6 boxes of 3% size each were created. 

• As a result of magnification, 21108 images were 

targeted, while 16867 images were obtained. This 

decrease in the number of images seen is because some 

images obtained because of processing will not fully 

serve experimental studies. 

 

2.2. YOLOv8 Model 

 

YOLOv8 is a recently developed, highly effective 

model using the YOLO (You Only Look Once) 

architecture. It was developed by Ultralytics, known for 

its work on the YOLOv8, YOLOv3 and YOLOv5 

models. Object detection, sample positioning, and 

image classification can be made in this model, as in 

the YOLOv7 and YOLOv6 models. The YOLOv8 

model also uses the Pytorch library like YOLOv7-v6. 

It can run on both CPU and GPU units as working 

hardware. 

YOLOv8 can achieve strong accuracy in 

COCO object classification. For example, the mid-

model YOLOv8m can reach 50.2% MAP when 

measured in COCO. YOLOv8 scores significantly 

better than YOLOV5 when evaluated against 

Roboflow 100, a dataset that evaluates model 

performance in various areas specific to the desired 

tasks. 

In addition, YOLOv8 includes developer 

convenience features. Unlike other models that can 

split into many different Python files in the execution 

of tasks, YOLOv8 does this with a CLI that makes 

model training more intuitive. The architecture of the 

YOLOv8 model is given in Figure 2 below. The date 

of this article study is the only article study of the 

YOLOv8 model. The architecture of the YOLUv8 

model, shown in Figure 2, was visualized by GitHub 

website users [28]. 
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Figure 2. YOLOv8 Architecture [28] 

 

3. Results and Discussion 

 

Experimental studies were conducted with the study’s 

deep learning-based YOLOv8 model. In experimental 

studies, it was aimed to determine three classes with 

image processing techniques. These classes are 

designated as helmet detection (helmet), head 

detection (head), and both head and helmet detection 

(all). In the working model, the batch value is eight, 

and the epoch value is 50 as a parameter. The 

numerical results of the experimental study are given 

in Table 2. 

Table 2. Numerical results of the experimental study. 

Class Precision Recall mAP50 mAP50-95 

All 0,938 0,933 0,969 0,642 

Head 0,923 0,918 0,956 0,639 

Helmet 0,952 0,947 0,971 0,646 

 

Table 2 provides metrics evaluating the 

model's performance in terms of precision, recall, 

mAP50, and mAP50-95 for two categories: 'Head' 

and 'Helmet.’ 

Precision refers to the proportion of true 

positive predictions (correctly identified heads or 
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helmets) among all positive predictions made by the 

model. An accuracy of 0.923 for 'Head' and 0.952 for 

'Helmet' means the model is highly accurate when it 

predicts the presence of a head or helmet in an image. 

Recall measures the proportion of actual 

positives (real heads or helmets in images) that the 

model correctly identified. A recall of 0.918 for 'Head' 

and 0.947 for 'Helmet' suggests the model is 

proficient at detecting most instances of heads or 

helmets when they are present. 

The mAP50 (mean average precision at 50% 

Intersection over Union - IoU) is a commonly used 

metric for object detection tasks. It considers both 

precision and recall calculating an overall 

performance score. A score of 0.956 for 'Head' and 

0.971 for 'Helmet' indicates excellent performance, 

with the model correctly identifying and accurately 

placing bounding boxes around heads and helmets in 

most cases. 

The mAP50-95 is another version of the mAP 

score, but it averages scores over a range of IoU 

thresholds from 0.5 to 0.95. This stricter metric can 

provide a more comprehensive view of the model's 

performance. The scores of 0.639 for 'Head' and 0.646 

for 'Helmet' are significantly lower than the mAP50 

scores, suggesting the model's performance decreases 

at higher IoU thresholds. 

The ’All’ category provides the average of the 

metrics across both the 'Head' and 'Helmet' categories. 

The overall mAP50 score of 0.969 indicates that the 

model performed very well across all classes in the 

dataset. 

The confusion matrix outputs are given in 

Figure 3. 

 

Figure 3. Confusion Matrix Output of the Study. 

 

Predicted labels (head, helmet, background) 

are marked in rows, while actual titles are listed in 

columns. When the model predicted the "head" label, 

it was correct 95% of the time. He never mistakenly 

defined "helmet" as "head.” For the "helmet" 

predictions, the model was right 97% of the time, 

sometimes misclassifying "head" as "head" (2% of 

the time). Misclassified "head" as "background" 4% 

of the time and "helmet" as "background" 3% of the 

time. It is clear from these results that the model 

performs exceptionally well in the 'head' or 'helmet' 

prediction but needs help in accurately identifying the 

'background,’ leading to a high rate of 

misclassification.  

In Figure 4, the output values of the study are 

given graphically. 

 

 

Figure 4. Graphical Representation of Experimental Study Analysis. 
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The test samples of the fixation system 

obtained from the experimental studies are given in 

Figure 5. 

 

 

Figure 5. Example Helmet/Head Detection Ratio. 

 

The data set used has been the subject of other 

scientific studies before. The table below gives this 

study's comparative results with similar data sets and 

similar studies. 

 
Table 3. Comparison of experimental studies on automatic helmet detection with similar. Datasets. 

Author Model mAP50 (%) 

[14] SSD, Faster R-CNN, YOLOv3, and Improved 

YOLOv3 

77.2, 94.3, 82.3 and 93.1 

[12]  

SSD 

36.8 

[29] 96.0 

[11] 68.5 

[30] YOLOv5s, YOLOv5m, YOLOv51 and YOLOv5x 93.6, 94.3, 94.4 and 94.7 

[4] YOLOv5 and Improved YOLOv5 92.1 and 95.7 

[18] YOLOv5s, YOLOv6s and YOLOv7 83.7, 83.5 and 89.6 
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Our Study YOLOv8 96.9 

 

Table 3 showcases a variety of studies, each 

utilizing different models for helmet detection and 

reporting the corresponding mAP50 scores achieved 

by each model. This comparison demonstrates the 

general improvement in the accuracy of helmet 

detection tasks with the evolution of the YOLO model 

from version 3 to version 8, keeping in mind that the 

different studies may have used different datasets and 

evaluation methods. The YOLOv8 model from this 

study achieved the highest mAP50 score of 96.9%, 

outperforming all other models tested in similar 

studies. This indicates that YOLOv8 is highly 

effective in helmet detection compared to other deep-

learning models. 

 

4. Conclusion and Suggestions 

 

In this study, a system that performs automatic helmet 

control in areas where human life is in danger in 

common working and living environments such as 

construction and factories, especially in areas where 

there is a possibility of falling off an object harmful 

to the head, has been proposed. Studies have been 

done. In experimental studies, it has been possible to 

determine whether people automatically wear helmets 

on their heads with image processing techniques. 

When Table 3 is examined, it is seen that the 

highest performance score among similar data sets 

and similar study samples is 96.9% with this study. 

The previous research with the highest success rate 

was Tan et al. [4]. It obtained a success value of 

95.7%. 

In addition, 98.1% for automatic helmet 

detection with computer vision and an average of 

95.6% for human head detection (mAP50) were 

obtained in the study. In this and similar studies, it has 

been observed and suggested that YOLOv8, one of 

the deep learning-based models, gives more 

successful results than other models. 

Potential directions for future work include 

enhancing the variety of the dataset by incorporating 

images from different industries where helmets are 

used, capturing various types of helmets, and 

considering diverse lighting and weather conditions. 

Real-time implementation of the helmet detection 

system in an actual construction site or other relevant 

industry could offer invaluable insights into its real-

world effectiveness and the challenges that might 

arise in such a context. The scope of the study could 

also be extended to include the detection of other 

forms of Personal Protective Equipment (PPE), such 

as safety vests, gloves, and safety glasses, 

contributing to a more comprehensive safety 

monitoring system. Additionally, integrating the 

helmet detection system with an alarm or notification 

system could serve as an immediate alert mechanism 

for supervisors or safety officers when a worker is 

detected without a helmet. While the YOLOv8 model 

has demonstrated promising results, other emerging 

models should be explored for helmet detection, 

ensuring continuous evaluation of new models and 

techniques to remain at the forefront of technology. A 

deeper investigation into the causes of false positives 

and negatives in the current model could lead to 

enhanced accuracy, involving a detailed analysis of 

the cases where the model fails and implementing 

strategies to rectify these inaccuracies. Lastly, 

developing lightweight models suitable for real-time 

applications, which minimally compromise accuracy 

but significantly reduce computational requirements, 

could be a key direction for future research. This 

would enable on-site deployment on edge devices for 

instant alerts and actions. 
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