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Abstract 

Forecasting tram passenger flow is an important part of the intelligent transportation 

system since it helps with resource allocation, network design, and frequency setting. 

Due to varying destinations and departure times, it is difficult to notice large 

fluctuations, non-linearity, and periodicity in tram passenger flows. In this paper, the 

first-order difference technique is used to eliminate seasonal structure from the time 

series data, and the performance of different machine learning algorithms on 

passenger flow forecasting in trams is evaluated. Furthermore, the impact of the 

COVID-19 pandemic on forecasting success is examined. For this purpose, the tram 

data of Kayseri Transportation Inc. for the years 2018-2021 is used. Different 

estimation models, including Linear Regression, Support Vector Regression, 

Random Forest, Artificial Neural Network, Convolutional Neural Network, and 

Long Short-Term Memory are applied, and the time series forecasting performances 

of the models are evaluated with MAPE and R2 metrics. 

 
 

 
1. Introduction 

 

With the continuous expansion of the corporate sector 

in major urban centers, traffic congestion has become 

increasingly prominent. Among its various 

challenges, overcrowding is particularly critical, 

presenting hidden threats to public safety and 

significant time wastage. A promising solution to this 

problem is the expansion of public transportation 

networks, focusing specifically on trams [1]. 

The rapid proliferation of tram systems and 

the development of sophisticated information 

management systems have led to a substantial 

generation of passenger trip data. This data surge has 

sparked significant interest in the scientific 

community, particularly in developing reliable 

methods to predict tram passenger flow. Accurate 

forecasting of passenger flows is crucial for efficient 

transportation management and plays a pivotal role in 

devising appropriate contingency plans for 
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emergencies, thus enhancing the city's overall 

emergency response capabilities [2]. 

In essence, the growth of corporate activities 

in urban areas has exacerbated traffic congestion 

issues, especially overcrowding. This has 

underscored the need for solutions like expanding 

tram networks. Leveraging the wealth of data 

generated by these systems has become a key research 

focus. Accurate predictions of passenger flow can 

lead to better urban transportation management and 

improved emergency preparedness. 

The aim of the article is to assess the 

efficiency of different machine learning algorithms in 

forecasting tram passenger flow. The study tackles 

the challenges in forecasting due to significant 

fluctuations, non-linearity, and periodicity in 

passenger numbers. Techniques such as log transform 

and first-order difference are utilized to preprocess 

the data, and the study investigates the impact of the 

COVID-19 pandemic on forecasting accuracy. Data 
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from Kayseri Transportation Inc. for 2018-2021 is 

analyzed using various models, including Linear 

Regression, Support Vector Regression, Random 

Forest, Artificial Neural Network, Convolutional 

Neural Network, and Long Short-Term Memory 

(LSTM). These models are evaluated using MAPE 

and R2 metrics to establish effective methods for 

predicting tram passenger flows, which can enhance 

urban transportation management and emergency 

preparedness. 

In the study, the log transform is applied to 

daily tram passenger number data from January 1, 

2018, to July 1, 2021. Subsequently, the first-order 

difference of consecutive days' passenger numbers is 

calculated. Three datasets are prepared: pre-pandemic 

(799 data points), in-pandemic (445 data points), and 

the entire dataset (1244 data points). These are 

divided into training and test sets for the last 30 days' 

prediction using the previous 10 days' data. The 

aforementioned models are trained and tested, 

employing multi-step and multi-output forecasting 

techniques. The study compares the results and 

assesses the impact of the pandemic on forecasting 

success, aiming to contribute to the field with new 

insights and methodologies. The key contributions of 

this study can be summarized as follows: 

 Creation and public sharing of the Kayseri 

tram passenger flow dataset. 

 Investigation of the COVID-19 pandemic's 

effects on time series forecasting. 

 Application of log transform and first-order 

difference techniques to reduce noise, 

linearize the data, and address seasonal 

patterns. 

 Implementation and detailed comparative 

performance evaluations of various machine 

learning and deep learning methods. 

 Comparison of the performance of multi-step 

and multi-output techniques. 

We believe this will establish a hybrid 

method for future studies. The remainder of this paper 

is organized as follows: Section 2 reviews the related 

works. Section 3 describes the methodologies of LR, 

SVR, Random Forest, ANN, CNN, and LSTM. 

Section 4 discusses the experimental results. Finally, 

Section 5 concludes the paper, explaining the major 

results and limitations of the current study, their 

significance, and suggesting future research topics. 

 

2. Related Work 

 

Intelligent computing and machine learning 

technologies are increasingly being used in various 

forecasting application scenarios, yielding impressive 

results. This progress is largely due to advancements 

in artificial intelligence and the growth of big data [3]-

[4]. Forecasting models can be categorized into three 

types: parametric, non-parametric, and hybrid [5]. 

Several parametric methods for forecasting 

transportation demand have been developed, 

including Box-Jenkins [6], smoothing techniques [7], 

autoregressive integrated moving average (ARIMA) 

[8], gray forecasting [9], and state space models [10]. 

Among these, the ARIMA model [8]-[11] is 

frequently used. It is a linear function of time-lagged 

variables and error terms; however, passenger flows 

are often characterized by high fluctuations, non-

linearity, and periodicity. Therefore, traditional 

parametric models, which assume linear relationships 

between time-lagged variables, may not effectively 

represent the structure of non-linear flows. 

Similarly, various non-parametric methods 

for forecasting transportation demand have been 

developed, including neural networks [14], k-nearest 

neighbors [15], Kalman filters [16], support vector 

regression (SVR) [17], and other methods [18]. 

Neural network models, such as Back Propagation 

(BP), stacked auto-encoders, and LSTM, often show 

good performance in trip mode analysis and flow 

prediction or similar issues [19]-[24]. However, they 

are susceptible to parameter selection and can be 

prone to local minima and overfitting [25]. SVM 

variants are also commonly used [26]-[28]. Unlike 

neural networks, SVR employs the structural risk 

minimization principle, aiming to reduce the 

generalization error upper bound rather than the 

training error [29], potentially overcoming some 

fundamental flaws of neural networks [30]. 

The use of hybrid models to enhance 

forecasting accuracy has become increasingly popular 

[31]. Each model constituting a hybrid model has its 

own set of advantages and disadvantages. The key 

idea behind hybrid modeling [32], [33] is to combine 

multiple models while retaining each’s benefits. 

These models have shown promising results in 

addressing forecasting challenges. 

Wang et al. [34] used an integrated model 

combining multivariate linear regression, K-nearest 

neighbor, XGBoost, and GRU as four submodels to 

accurately predict urban public transportation short-

term passenger flows. They then integrated these 

models using a regression algorithm, demonstrating 

the integrated model's superiority over individual sub-

models. Additionally, the popular hybrid forecasting 

model, the decomposition-integration method, 

decomposes the original data into several 

components, processes each component, and 

integrates them for final predictions [5], [35]-[36]. 

However, this method is rarely used for short-term 

bus passenger flow forecasting, and it typically 

involves only a single decomposition of the original 
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data. Some components remain highly unstable after 

initial decomposition, which hinders accurate 

predictions. Therefore, additional noise reduction for 

unstable components post-decomposition is 

necessary. 

Li et al. [37] developed a secondary 

decomposition-integration method for short-term bus 

route passenger flow prediction, integrating empirical 

modal decomposition, sample entropy, and kernel 

extreme learning machines. However, the superficial 

structure of traditional machine learning methods 

struggles with the complex nonlinearity of spatial and 

temporal travel demand patterns [38]. 

A recent study introduced a new model, ITS-

Pro-Flow, for predicting short-term traffic flow in 

intelligent transportation systems (ITS) [49]. It builds 

upon the Pro-Energy model, utilizing historical data 

and current conditions for prediction. ITS-Pro-Flow 

improves upon Pro-Energy by dynamically adjusting 

past predictions and current observations, with 

extensive simulations showing its enhanced accuracy. 

The model incorporates a dynamic weighting factor 

and a thresholding strategy, improving adaptability 

and precision. The study also explores parameter 

variations for optimal prediction accuracy. 

With the advent of the Internet of Things 

(IoT), numerous devices and software have been 

developed to assist in prediction tasks. Gao et al. [39] 

proposed a method to increase the efficacy of 

software-defined devices, while they also introduced 

a technology to transform business process execution 

language (BPEL) into timed automata for formal 

verification, bridging BPEL and IoT data in support 

of prediction tasks [40]. Huang et al. [41] optimized 

virtual machine allocation strategies for cloud data 

centers, and Ma et al. [42] proposed a real-time 

multiple workflow scheduling method in a cloud 

environment, enhancing the processing efficacy of 

large data sets for passenger flow source data 

analysis. 

Despite the successes of these methods, 

current passenger flow forecasting faces challenges 

such as reliance on a single data source and 

insufficient analysis of influencing factors, leading to 

low accuracy in existing methodologies and 

impacting urban traffic management [43]. Often, the 

performance of a hybrid model is either compared 

with those in the literature or with a maximum of 2-3 

methods. 

 

3. Material and Method 

 

In this section, we briefly talk about the data set and 

the preprocessing methods used. Following that, we 

discuss the machine learning models that were 

utilized, which include LR, SVR, Random Forest, 

ANN, CNN, and LSTM architectures. A flow 

diagram is presented in Figure 1 to demonstrate the 

research process.  

 
Figure 1. Overall methodology diagram. 

 

3.1. Dataset 

 

The dataset [44] consists of Kayseri tram daily 

passenger data between January 1, 2018 and July 1, 

2021. The daily passenger flow data is shown in 

Figure 2. Because of eids such as Ramadan Eid, Eid 

of Sacrifice, and July 15 Democracy and National 

Unity Day, a free transit system is implemented in the 

city of Kayseri, and therefore, tram passenger 

numbers are not available. In addition, the number of 

passengers remained below fifty on the days when the 

curfew was performed during the COVID-19 

pandemic. For this reason, the number of passengers 

on some days is seen as close to zero in Figure 2. 

These days were excluded from the dataset due to the 

absence of passenger flow data. Therefore, passenger 

data for 33 days out of 1277 was excluded from the 

dataset, leaving a total of 1244 passenger data points 

in the dataset. As seen from Figure 2, there has been 

a noticeable decrease in passenger numbers since 
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mid-March 2020 due to the COVID-19 pandemic. 

The first detected COVID-19 case in Türkiye was 

announced by the Ministry of Health on March 11, 

2020. The first death due to the virus in the country 

occurred on March 15, 2020. As of March 16, 2020, 

passenger flow in urban rail transportation in Kayseri 

started to decrease. In our study, in order to observe 

the effect of the COVID-19 pandemic, the entire 

dataset was divided into two parts: pre-pandemic (799 

days) and during the pandemic (445 days), and three 

different datasets were obtained together with the 

whole dataset. 

 

3.2. Preprocessing 

 

Before being modeled with machine learning 

techniques, time series analysis often requires some 

data preparation. In time series forecasting, data 

transforms can be used to eliminate noise and improve 

the signal. One of the most frequently used data 

transformation techniques in time series data analysis 

is log transformation. By using log transformation, 

time series data with an exponential distribution can 

be turned into a linear trend, which is easy to model. 

Figure 3 shows the data obtained after applying the 

log transform to the passenger flow data, and, as can 

be seen, the data is squeezed into a smaller range. 

After obtaining log passenger data, the first-order 

difference technique was performed to make the time 

series data stationary. To simplify the prediction 

problem, differencing methods can be employed to 

eliminate trend and seasonal structure from the series. 

A difference transform is a simple approach to getting 

rid of a systematic structure in a time series. By 

subtracting the preceding value from each value in the 

series, a trend can be removed. The process is known 

as first-order differencing. After performing the first-

order difference on the log transform data, the 

obtained data are shown in Figure 4. 

 

 

 

 
 

Figure 2. Tram passenger flow data in Kayseri. 

 

 
 

Figure 3. Tram passenger flow data after applying log transformation. 
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Figure 4. The data obtained after performing first order difference on log passenger data. 

 

3.3. Linear Regression 

 

Linear regression is a statistical technique used for 

predicting future values based on past data. It's a 

popular quantitative method for identifying 

underlying trends and determining if values have 

deviated significantly. A linear regression trendline 

uses the least squares method to plot a straight line 

across data, minimizing the gaps between the values 

and the trendline. Each data point's trendline value is 

plotted using this linear regression indicator [45]. 

In our experiments, two different LR models 

are trained. The first model, used for one-step 

forecasting, predicts the passenger flow of a day using 

first-order difference data from the previous 10 days, 

resulting in an input vector size of 10. The second 

model, designed for multi-output forecasting, predicts 

passenger flow for the next 30 days using the same 

input data. Both models use the same input layer 

shape and are trained and tested using the scikit-learn 

Linear Regression module with default settings. 

 

3.4. Support Vector Regression 

 

Support vector machines (SVM) are a supervised 

machine learning method based on the Vapnik-

Chervonenkis (VC) theory, which identifies 

characteristics of machine learning conducive to 

accurate test data predictions. SVM is applicable to 

both classification and regression problems. Support 

vector regression (SVR) involves computing a linear 

regression function in a high-dimensional input space 

(feature space) where the input data is mapped 

through a nonlinear function. This transforms a 

nonlinear regression problem in low-dimensional 

input space into a linear one in high-dimensional 

space, where the solution is derived [46]. 

Two different SVR models are trained in the 

experiments. The first model, for one-step 

forecasting, and the second model, for multi-output 

forecasting, use the same inputs as the LR models. 

Both models are trained and tested using the Scikit-

learn SVR module with default settings. 

 

3.5. Random Forest 

 

A random forest (RF) is an ensemble of several 

independent decision trees. Each tree generates a 

class prediction, and the model's forecast is the one 

with the most votes. Random forests are effective 

because they combine many generally uncorrelated 

trees, outperforming individual constituent models. 

RF is notable for its application to both regression and 

classification problems, faster training compared to 

other methods, higher estimation speed, fewer tuning 

parameters, and direct applicability to 

multidimensional problems [47]. 

Two different RF models are trained in the 

experiments. The first model is for one-step 

forecasting, while the second model is for multi-

output forecasting. Both models use the same inputs 

as the previous models and are trained and tested 

using the Scikit-Learn Random Forest Regressor 

module with default settings. 

 

3.6. ANN 

 

The ANN (Artificial Neural Network) model is an 

intelligent system used for solving complex issues in 

various applications, including optimization and 

prediction. The ANN structure comprises an input 

layer for data collection, an output layer for computed 

information, and one or more hidden layers 

connecting the input and output. Each neuron, the 

fundamental processing unit of a neural network, 

performs two tasks: receiving inputs and generating 

output. Inputs are multiplied by connection weights, 
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their products and biases are added, and then an 

activation function is used to generate output. 

Two different ANN models are trained in the 

experiments. The first model, for one-step 

forecasting, uses first-order difference data from the 

previous 10 days, resulting in an input vector size of 

10. It is enhanced by adding a dense layer of 24 units 

activated using the Rectified Linear Unit (ReLU) 

function and a 1-unit dense output layer for single-day 

prediction. The second model, for multi-output 

forecasting, uses the same input data. It includes a 24-

unit dense layer and a 30-unit dense output layer, with 

the hidden layer activated using the ReLU function. 

 

3.7. CNN 

 

A standard CNN (Convolutional Neural Network) 

design includes an input layer, multiple hidden layers, 

and an output layer. The hidden layers consist of 

convolutional layers, an activation layer, pooling, and 

fully connected dense layers. The convolution layer, 

critical to the CNN model, accumulates 

discriminative features from the input using defined 

convolution filters. The activation layer introduces 

non-linearity with an activation function (e.g., ReLU, 

tanh, or sigmoid), helping to resolve the vanishing 

gradient problem during training. The pooling layer's 

main goal is to reduce the data representation size, the 

number of parameters, and the model's computational 

cost. 

Two different CNN models are trained in the 

experiments. The first model, for one-step 

forecasting, uses first-order difference data from the 

previous 10 days with an input layer shape of 10x1. It 

includes a 16-filter convolutional layer with a 3-

kernel and ReLU activation, followed by a max-

pooling operation with a pool size of two. A second 

convolutional layer with a 32-filter and 3-kernel, 

along with ReLU activation, is added, followed by a 

GlobalMaxPooling1D operation and a 1-unit dense 

output layer. The second CNN model is similar but 

includes a 30-unit output layer for multi-output 

forecasting. 

 

3.8. LSTM 

 

LSTM (Long Short-Term Memory) is a type of RNN 

(Recurrent Neural Network) designed to address the 

problem of vanishing or exploding gradients. Its 

unique feature is the LSTM cell, which has specific 

gates: the input gate determines the relevance of 

incoming data, the forget gate decides what portions 

of the cell state to discard, and the output gate 

determines what information to forward to the next 

hidden state. Compared to traditional RNN models, 

LSTM can maintain long-term dependencies among 

input data items, helping to alleviate the vanishing 

gradient problem. 

Two different LSTM models are trained in 

the experiments. The first model, for one-step 

forecasting, uses first-order difference data from the 

previous 10 days, with an input layer shape of 10x1 

and a hidden state dimension of 24. It includes a dense 

layer with 1 unit. The second model, for multi-output 

forecasting, uses the same input data. An LSTM layer 

with 24 internal units is added, followed by a 

GlobalMaxPooling1D operation and a dense output 

layer of 30 units. 

 

3.9. Evaluation Criteria 

 

In this research, two popular scale invariant metrics 

named Mean Absolute Percentage Error (MAPE) and 

R-squared (R2) are used to evaluate the performance 

of forecasting methods. The MAPE is the mean of 

absolute percentage errors. One disadvantage of this 

metric is that if there is an actual value that equals 

zero, then the MAPE value equals infinity, and this 

makes no sense with regard to percentage. However, 

the preprocessed data used in this research does not 

contain zero values. 

 

𝑴𝑨𝑷𝑬 =
𝟏

𝑵
∑|

𝒚𝒊 − 𝒑𝒊
𝒚𝒊

|

𝑵

𝒊=𝟏

 (1) 

 

where N is the total number of data values, 𝒑𝒊 is the 

predicted value, and 𝒚𝒊 is the actual value for ith 

position. Because the MAPE value corresponds to the 

error in terms of percentages, the lower the MAPE 

value is, the better the forecast is. As indicated in 

Equation (2), the R2 metric indicates how much 

variance is accounted for by the fitted model. It is a 

statistical measure that represents the proportion of 

the variance for a dependent variable that’s explained 

by an independent variable or variables in a regression 

model. The higher the R2 value represents the better 

the prediction performance [4]. 

 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊 − 𝒑𝒊)

𝟐𝑵
𝒊=𝟏

∑ (𝒚𝒊 − �̅�)
𝟐𝑵

𝒊=𝟏

 (2) 

 

where 𝒚𝒊 and 𝒑𝒊 correspond to the actual value and 

predicted value for ith position, respectively. �̅� is the 

mean of the actual values. 

 

4. Results and Discussion 

 

In this section, we will first evaluate the forecasting 

performances of time series forecasting methods on 

pre-pandemic, in-pandemic, and entire datasets, 

according to the visuals in Table 1, Table 2, and Table 
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3. Based on these tables, we will compare the 

performances of the methods with each other. 

Additionally, the best performances will be evaluated 

according to the MAPE and R2 values presented in 

Table 4 and Table 5. Then, we will examine the 

impact of the COVID-19 pandemic on forecasting 

performance. Finally, the effects of multi-step and 

multi-output techniques on forecasting performance 

will be explored, and we will determine which 

technique is superior. 

One-step forecasts are used to predict the next 

step's observation. In contrast, multi-step forecasts are 

utilized to predict a series of future values based on 

observed time series data. The multi-output technique 

involves creating a single model capable of predicting 

the entire forecast sequence in one attempt [48]. 

 

 
Table 1. Comparison of actual values and predicted values by LR and SVR. 
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Table 2. Comparison of actual values and predicted values by RF and ANN. 
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In this study, both multi-step and multi-output 

forecasting techniques are applied to the models, as 

they are designed for 30-day time series forecasting. 

Upon examining the figures in Table 1, Table 

2, and Table 3 for the pre-pandemic dataset, it is 

evident that the multi-output performances of all 

models are superior to their multi-step counterparts. 

In all models except LR, a clear superiority of multi-

output performances over multi-step performances is 

observed. When comparing the visuals in Table 1, 

Table 2, and Table 3 in terms of multi-output 

performance, it is apparent that RF provides the best 

performance, while LR exhibits the least impressive 

results. 

When comparing the multi-step 

performances of the methods on the pre-pandemic 

dataset, it is evident that the LR model demonstrates 

the best performance, while the RF model exhibits the 

worst. As shown in Table 4 and Table 5, the LR model 
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achieved the best MAPE (1.57) and the best R2 (0.17) 

values for multi-step forecasting.  

 

Table 3. Comparison of actual values and predicted values by LSTM and CNN. 

 LSTM CNN 
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Conversely, the RF model's performance is the 

poorest, as indicated by its MAPE (4.30) and R2 (-

4.951) values.       

Additionally, when considering the multi-

output values in Table 4 and Table 5, it is observed 

that the RF model achieves the best MAPE (0.83) and 

R2 (0.616) values, while the LR model shows the 

worst performance with a MAPE of 1.39 and an R2 of 

0.366.  

Upon examining the visuals in Table 1, Table 

2, and Table 3 for the in-pandemic dataset, it is noted 

that the multi-step performance of the SVR model is 

significantly better than its multi-output performance, 

whereas the multi-output performances of the RF and 

CNN models are notably better than their multi-step 

counterparts. 

Analyzing the values in Table 4 and Table 5 

reveals that the multi-output performance of the LR 
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and ANN models is superior to their multi-step 

performance, while the LSTM model performs better 

in multi-step forecasting than in multi-output 

forecasting. For the in-pandemic dataset, the ANN 

model achieves the best multi-output performance 

with a MAPE value of 2.11, and the RF model attains 

an R2 value of 0.644. The best multi-step 

performances are achieved by the ANN model with a 

MAPE of 2.37 and the LR model with an R2 of 0.498. 

The SVR model exhibits the worst multi-output 

performance with a MAPE of 5.39 and an R2 of -0.35, 

whereas the RF model shows the poorest multi-step 

performance with a MAPE of 17.44 and an R2 of -

11.547. 

When analyzing the visuals in Table 1, Table 

2, and Table 3 for the entire dataset, it is observed that 

the multi-output performances of all models surpass 

their multi-step counterparts, except for the SVR 

model. These tables also indicate that the RF model 

demonstrates the worst multi-step performance. Upon 

examining the MAPE and R2 values in Table 4 and 

Table 5, it is seen that the LSTM model, with a MAPE 

of 2.99, and the CNN model, with an R2 value of 0.55, 

achieve the best multi-step performance. Conversely, 

the RF model records the worst multi-step 

performance, with a MAPE of 10.86 and an R2 value 

of -3.696.  

It is observed that the CNN model, with a 

MAPE value of 2.10, and the RF model, with an R2 

value of 0.706, exhibit the best multi-output 

performance. Conversely, the SVR model shows the 

worst multi-output performance, with a MAPE value 

of 8.32 and an R2 value of -1.816. 

MAPE is a suitable metric for benchmarking 

performance across different datasets. Therefore, 

performance comparisons of pre-pandemic, in-

pandemic, and entire datasets are made based on 

MAPE values. Table 4 indicates that the best MAPE 

value for the pre-pandemic dataset is 0.83 for the in-

pandemic dataset, it is 2.11; and for the entire dataset, 

it is 2.10. Evaluating the best MAPE values from 

these three different datasets suggests that the 

COVID-19 pandemic has negatively impacted 

forecasting performance. Additionally, Tables 4 and 

5 reveal that all the best results are achieved using the 

multi-output method. Although the multi-step 

performance of some models surpasses their multi-

output performance, the multi-output method 

generally performs much better and has achieved the 

best results. Therefore, choosing the multi-output 

technique would be a more logical approach. 

 

 

Table 4.  MAPE results of different forecasting methods. 

 LR(%) SVR(%) RF(%) ANN(%) LSTM(%) CNN(%) 

Pre-

Pandemic 

Multi-step 

Multi-output 

1.57 

1.39 

1.77 

1.09 

4.30 

0.83 

2.39 

1.14 

2.17 

0.95 

2.99 

1.13 

In-

Pandemic 

Multi-step 

Multi-output 

2.82 

2.38  

3.19 

5.39  

17.44 

2.44 

2.37 

2.11  

2.45 

3.41  

10.53 

2.92 

Entire 

Dataset 

Multi-step 

Multi-output 

3.24 

2.75 

6.03 

8.32 

10.86  

2.19 

4.75 

2.17 

2.99 

2.80 

3.15 

2.10 

 

Table 5. R2 results of different forecasting methods. 

 LR SVR RF ANN LSTM CNN 

Pre-

Pandemic 

Multi-step 

Multi-output 

0.170 

0.366 

-0.066 

0.518 

-4.951 

0.616 

-0.903 

0.419 

-0.375 

0.597 

-1.787 

0.434 

In-

Pandemic 

Multi-step 

Multi-output 

0.498 

0.504 

0.099 

-0.350 

-11.547 

0.644 

0.488 

0.577 

0.467 

0.430 

-3.249 

0.439 

Entire 

Dataset 

Multi-step 

Multi-output 

0.459 

0.449 

-0.584 

-1.816 

-3.696 

0.706 

-0.119 

0.617 

0.353 

0.383 

0.550 

0.609 

4.1. Benefits and Advantages of the Study 

 

This study presents several significant benefits and 

advantages in the field of passenger flow forecasting 

on trams using machine learning algorithms. The key 

benefits of this research can be summarized as 

follows: 

 Enhanced Forecasting Accuracy: By 

employing a range of machine learning 

algorithms, including LR, SVR, RF, ANN, 
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CNN, and LSTM, this study demonstrates 

improved accuracy in forecasting tram 

passenger flow. The use of MAPE and R2 

metrics for performance evaluation further 

substantiates the reliability of the forecasts. 

 Innovative Data Preprocessing 

Techniques: The application of log 

transform and first-order difference 

techniques for data preprocessing is a novel 

approach in this field. These methods 

effectively handle the challenges of large 

fluctuations, non-linearity, and periodicity in 

passenger numbers, leading to more accurate 

forecasting models. 

 Comprehensive Analysis of Pandemic 

Impact: The study provides a thorough 

analysis of the impact of the COVID-19 

pandemic on passenger flow forecasting. By 

dividing the dataset into pre-pandemic, in-

pandemic, and entire dataset periods, the 

research offers valuable insights into how 

extraordinary events can affect passenger 

behavior and forecasting accuracy. 

 Practical Implications for Urban 

Transportation Management: The findings 

of this study have practical implications for 

urban transportation planning and 

management. Accurate forecasting models 

can assist in efficient resource allocation, 

network design, and frequency setting of tram 

services, contributing to better urban 

transportation systems. 

 Methodological Contributions: The study 

contributes methodologically to the field by 

comparing multi-step and multi-output 

forecasting techniques. This comparative 

analysis not only enhances the understanding 

of different forecasting methods but also 

guides future research in selecting 

appropriate techniques based on specific 

requirements. 

 Data Set Creation and Sharing: The 

creation and public sharing of the Kayseri 

tram passenger flow dataset is a valuable 

contribution. It not only facilitates further 

research in this area but also promotes 

transparency and reproducibility in scientific 

studies. 

 Cross-Disciplinary Applicability: While 

focused on tram passenger flow, the 

methodologies and findings of this study 

have potential applicability in other domains 

facing similar forecasting challenges, thereby 

extending its impact beyond the field of urban 

transportation. 

 

This comprehensive approach to forecasting tram 

passenger flow using machine learning techniques 

underscores the study’s contribution to both the 

academic and practical realms of intelligent 

transportation systems. The advantages highlighted in 

this section demonstrate the study’s relevance, 

innovation, and applicability in addressing complex 

challenges in passenger flow forecasting. 

 

5. Conclusion 

 

In this study, daily passenger flow data of the Kayseri 

tram between January 1, 2018 and July 1, 2021 is 

used, and three different datasets are created using the 

pre-pandemic period, the pandemic period, and the 

entire dataset in order to observe the effects of the 

COVID-19 pandemic on the forecasting performance. 

Log transform and first-order difference techniques 

are applied to the datasets, respectively, in order to 

clear the noise in the data, obtain a more linear 

structure, and eliminate the seasonal structure from 

the data. LR, SVM, RF, ANN, CNN, and LSTM 

models are trained on three different datasets to 

estimate the passenger numbers for the next 30 days 

by looking at the passenger numbers of the previous 

10 days. Multi-step and multi-output techniques are 

used to estimate the last 30 days. 

From the results obtained, it is understood 

that the multi-output technique has superior 

performance to the multi-step technique and that the 

COVID-19 pandemic has a negative effect on 

forecasting performance. According to the R2 metric, 

the RF model performs best on all datasets. According 

to the MAPE metric, RF on the pre-pandemic dataset, 

ANN on the in-pandemic dataset, and CNN on the 

entire dataset show the best performances. It is 

understood that the RF model, which uses the multi-

output technique in the normal order, that is, in the 

pre-pandemic period, can predict the number of 30-

day Kayseri passengers with quite high success. 

In the future, efforts to develop machine 

learning methods combined with meta-heuristics and 

bio-inspired algorithms will be important in terms of 

both reducing the negative impact of the COVID-19 

pandemic on forecasting performance and improving 

success. 

 

Data availability. The dataset investigated in this 

study is available at  

 

https://raw.githubusercontent.com/kagandedeturk/Ti

meSeries/main/Tramvay.csv . 

 

Conflict of Interest Statement 

 

There is no conflict of interest between the authors. 

https://raw.githubusercontent.com/kagandedeturk/TimeSeries/main/Tramvay.csv
https://raw.githubusercontent.com/kagandedeturk/TimeSeries/main/Tramvay.csv


B. Adanur Dedeturk, B.K. Dedeturk, A. Akbas / BEU Fen Bilimleri Dergisi 13 (1), 1-14, 2024 

12 
 

 

Statement of Research and Publication Ethics 

 

The study is complied with research and publication 

ethics. 

 

References 

 

[1] D. Li et al., “Percolation transition in dynamical traffic network with evolving critical bottlenecks,” 

Proceedings of the National Academy of Sciences, vol. 112, no. 3, pp. 669–672, 2014. 

doi:10.1073/pnas.1419185112. 

[2] M. Ni, Q. He, and J. Gao, “Forecasting the subway passenger flow under event occurrences with social 

media,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–10, 2016. 

doi:10.1109/tits.2016.2611644. 

[3] J. Yu, “Short-Term Airline Passenger Flow Prediction Based on the Attention Mechanism and Gated 

Recurrent Unit Model,” Cognitive Computation, vol. 14, no. 2, pp. 693–701, 2022. 

doi:10.1007/s12559-021-09991-x . 

[4] A. Kanavos, F. Kounelis, L. Iliadis, and C. Makris, “Deep Learning Models for Forecasting Aviation 

Demand Time Series,” Neural Computing and Applications, vol. 33, no. 23, pp. 16329–16343, 2021. 

doi:10.1007/s00521-021-06232-y  

[5] C. Li, X. Wang, Z. Cheng, and Y. Bai, “Forecasting Bus Passenger Flows by Using a Clustering-Based 

Support Vector Regression Approach,” IEEE Access, vol. 8, pp. 19717–19725, 2020, doi: 

10.1109/access.2020.2967867. 

[6] S. Anvari, S. Tuna, M. Canci, and M. Turkay, “Automated Box–Jenkins Forecasting Tool With an 

Application for Passenger Demand in Urban Rail Systems,” Journal of Advanced Transportation, vol. 

50, no. 1, pp. 25–49, Sep. 2015, doi: 10.1002/atr.1332. 

[7] A. Samagaio and M. Wolters, “Comparative Analysis of Government Forecasts for the Lisbon 

Airport,” Journal of Air Transport Management, vol. 16, no. 4, pp. 213–217, Jul. 2010, doi: 

10.1016/j.jairtraman.2009.09.002. 

[8] M. Milenković, L. Švadlenka, V. Melichar, N. Bojović, and Z. Avramović, “Sarima Modelling 

Approach for Railway Passenger Flow Forecasting,” Transport, pp. 1–8, Mar. 2016, doi: 

10.3846/16484142.2016.1139623. 

[9] X. Xiao, J. Yang, S. Mao, and J. Wen, “An Improved Seasonal Rolling Grey Forecasting Model Using 

a Cycle Truncation Accumulated Generating Operation for Traffic Flow,” Applied Mathematical 

Modelling, vol. 51, pp. 386–404, Nov. 2017, doi: https://doi.org/10.1016/j.apm.2017.07.010. 

[10] A. Stathopoulos and M. G. Karlaftis, “A Multivariate State Space Approach for Urban Traffic Flow 

Modeling and Prediction,” Transportation Research Part C: Emerging Technologies, vol. 11, no. 2, 

pp. 121–135, Apr. 2003, doi: https://doi.org/10.1016/s0968-090x(03)00004-4. 

[11] X. Tang and G. Deng, “Prediction of Civil Aviation Passenger Transportation Based on ARIMA 

Model,” Open Journal of Statistics, vol. 06, no. 05, pp. 824–834, 2016, doi: 

https://doi.org/10.4236/ojs.2016.65068. 

[12] N. K. Chauhan and K. Singh, “A Review on Conventional Machine Learning vs Deep Learning,” in 

2018 International Conference on Computing, Power and Communication Technologies (GUCON), 

Sep. 2018, doi: https://doi.org/10.1109/gucon.2018.8675097. 

[13] Y. Park, Y. Choi, K. Kim, and J. K. Yoo, “Machine Learning Approach for Study on Subway 

Passenger Flow,” Scientific Reports, vol. 12, no. 1, p. 2754, Feb. 2022, doi: 

https://doi.org/10.1038/s41598-022-06767-7. 

[14] F. Moretti, S. Pizzuti, S. Panzieri, and M. Annunziato, “Urban Traffic Flow Forecasting Through 

Statistical and Neural Network Bagging Ensemble Hybrid Modeling,” Neurocomputing, vol. 167, pp. 

3–7, Nov. 2015, doi: https://doi.org/10.1016/j.neucom.2014.08.100. 

[15] B. Sun, W. Cheng, P. Goswami, and G. Bai, “Short-Term Traffic Forecasting using Self-Adjusting K-

Nearest Neighbours,” IET Intelligent Transport Systems, vol. 12, no. 1, pp. 41–48, Feb. 2018, doi: 

https://doi.org/10.1049/iet-its.2016.0263. 

[16] J. Guo, W. Huang, and B. M. Williams, “Adaptive Kalman Filter Approach for Stochastic Short-Term 

Traffic Flow Rate Prediction and Uncertainty Quantification,” Transportation Research Part C: 

Emerging Technologies, vol. 43, pp. 50–64, Jun. 2014, doi: https://doi.org/10.1016/j.trc.2014.02.006. 

https://doi.org/10.1038/s41598-022-06767-7


B. Adanur Dedeturk, B.K. Dedeturk, A. Akbas / BEU Fen Bilimleri Dergisi 13 (1), 1-14, 2024 

13 
 

[17] Y. Sun, B. Leng, and W. Guan, “A Novel Wavelet-Svm Short-Time Passenger Flow Prediction in 

Beijing Subway System,” Neurocomputing, vol. 166, pp. 109–121, Oct. 2015, doi: 

https://doi.org/10.1016/j.neucom.2015.03.085. 

[18] L. Li, X. Chen, and L. Zhang, “Multimodel Ensemble for Freeway Traffic State Estimations,” IEEE 

Transactions on Intelligent Transportation Systems, vol. 15, no. 3, pp. 1323–1336, Jun. 2014, doi: 

https://doi.org/10.1109/tits.2014.2299542. 

[19] J. Zhang, F. Chen, Z. Cui, Y. Guo, and Y. Zhu, “Deep Learning Architecture for Short-Term Passenger 

Flow Forecasting in Urban Rail Transit,” IEEE Transactions on Intelligent Transportation Systems, 

vol. 22, no. 11, pp. 7004–7014, Nov. 2021, doi: https://doi.org/10.1109/tits.2020.3000761. 

[20] X. Feng, T. Gan, and X. Wang, “Feedback Analysis of Interaction between Urban Densities and Travel 

Mode Split,” International Journal of Simulation Modelling, vol. 14, no. 2, pp. 349–358, Jun. 2015, 

doi: 10.2507/ijsimm14(2)co9. 

[21] Y. Wei and M.-C. Chen, “Forecasting The Short-Term Metro Passenger Flow with Empirical Mode 

Decomposition and Neural Networks,” Transportation Research Part C: Emerging Technologies, vol. 

21, no. 1, pp. 148–162, Apr. 2012, doi: https://doi.org/10.1016/j.trc.2011.06.009. 

[22] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long Short-Term Memory Neural Network for Traffic 

Speed Prediction Using Remote Microwave Sensor Data,” Transportation Research Part C: Emerging 

Technologies, vol. 54, pp. 187–197, May 2015, doi: https://doi.org/10.1016/j.trc.2015.03.014. 

[23] P. He, “Optimization and Simulation of Remanufacturing Production Scheduling under 

Uncertainties,” International Journal of Simulation Modelling, vol. 17, no. 4, pp. 734–743, Dec. 2018, 

doi: https://doi.org/10.2507/ijsimm17(4)co20. 

[24] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, “Online-Svr for Short-Term Traffic Flow 

Prediction under Typical and Atypical Traffic Conditions,” Expert Systems with Applications, vol. 36, 

no. 3, pp. 6164–6173, Apr. 2009, doi: https://doi.org/10.1016/j.eswa.2008.07.069. 

[25] G. Xie, S. Wang, Y. Zhao, and K. K. Lai, “Hybrid Approaches Based on Lssvr Model for Container 

Throughput Forecasting: A Comparative Study,” Applied Soft Computing, vol. 13, no. 5, pp. 2232–

2241, May 2013, doi: https://doi.org/10.1016/j.asoc.2013.02.002. 

[26] X. Wang, N. Zhang, Y. Zhang, and Z. Shi, “Forecasting of Short-Term Metro Ridership with Support 

Vector Machine Online Model,” Journal of Advanced Transportation, vol. 2018, pp. 1–13, Jun. 2018, 

doi: https://doi.org/10.1155/2018/3189238. 

[27] A. Singhal, C. Kamga, and A. Yazici, “Impact of Weather on Urban Transit Ridership,” 

Transportation Research Part A: Policy and Practice, vol. 69, pp. 379–391, Nov. 2014, doi: 

https://doi.org/10.1016/j.tra.2014.09.008. 

[28] A. Koesdwiady, R. Soua, and F. Karray, “Improving Traffic Flow Prediction With Weather 

Information in Connected Cars: A Deep Learning Approach,” IEEE Transactions on Vehicular 

Technology, vol. 65, no. 12, pp. 9508–9517, Dec. 2016, doi: https://doi.org/10.1109/tvt.2016.2585575. 

[29] C. Li, R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, “Multimodal Deep 

Support Vector Classification with Homologous Features and Its Application to Gearbox Fault 

Diagnosis,” Neurocomputing, vol. 168, pp. 119–127, Nov. 2015, doi: 

https://doi.org/10.1016/j.neucom.2015.06.008 

[30] M.-L. Huang, “Intersection Traffic Flow Forecasting Based on Ν-Gsvr with a New Hybrid 

Evolutionary Algorithm,” Neurocomputing, vol. 147, pp. 343–349, Jan. 2015, doi: 

https://doi.org/10.1016/j.neucom.2014.06.054 

[31] Y. Zhang and Y. Liu, “Analysis of Peak and Non-Peak Traffic Forecasts Using Combined Models,” 

Journal of Advanced Transportation, vol. 45, no. 1, pp. 21–37, Sep. 2010, doi: 

https://doi.org/10.1002/atr.128. 

[32] M. Khashei and M. Bijari, “A Novel Hybridization of Artificial Neural Networks and Arıma Models 

for Time Series Forecasting,” Applied Soft Computing, vol. 11, no. 2, pp. 2664–2675, Mar. 2011, doi: 

https://doi.org/10.1016/j.asoc.2010.10.015. 

[33] T. Pant, C. Han, and H. Wang, “Examination of Errors of Table Integration in Flamelet/Progress 

Variable Modeling of a Turbulent Non-Premixed Jet Flame,” Applied Mathematical Modelling, vol. 

72, pp. 369–384, Aug. 2019, doi: https://doi.org/10.1016/j.apm.2019.03.016. 

https://doi.org/10.1109/tits.2020.3000761
https://doi.org/10.1016/j.neucom.2014.06.054


B. Adanur Dedeturk, B.K. Dedeturk, A. Akbas / BEU Fen Bilimleri Dergisi 13 (1), 1-14, 2024 

14 
 

[34] X. Wang, L. Huang, H. Huang, B. Li, Z. Xia, and J. Li, “An Ensemble Learning Model for Short-Term 

Passenger Flow Prediction,” Complexity, vol. 2020, pp. 1–13, Dec. 2020, doi: 

https://doi.org/10.1155/2020/6694186. 

[35] H. Li, J. Bai, and Y. Li, “A Novel Secondary Decomposition Learning Paradigm with Kernel Extreme 

Learning Machine for Multi-Step Forecasting of Container Throughput,” Physica A: Statistical 

Mechanics and its Applications, vol. 534, p. 122025, Nov. 2019, doi: 

https://doi.org/10.1016/j.physa.2019.122025. 

[36] M. Niu, Y. Hu, S. Sun, and Y. Liu, “A Novel Hybrid Decomposition-Ensemble Model Based on Vmd 

and Hgwo for Container Throughput Forecasting,” Applied Mathematical Modelling, vol. 57, pp. 163–

178, May 2018, doi: https://doi.org/10.1016/j.apm.2018.01.014. 

[37] Y. Li and C. Ma, “Short-Time Bus Route Passenger Flow Prediction Based on a Secondary 

Decomposition Integration Method,” Journal of Transportation Engineering, Part A: Systems, vol. 

149, no. 2, Feb. 2023, doi: https://doi.org/10.1061/jtepbs.teeng-7496. 

[38] H. Nguyen, L. Kieu, T. Wen, and C. Cai, “Deep Learning Methods in Transportation Domain: A 

Review,” IET Intelligent Transport Systems, vol. 12, no. 9, pp. 998–1004, Jul. 2018, doi: 

https://doi.org/10.1049/iet-its.2018.0064. 

[39] H. Gao, X. Qin, R. J. D. Barroso, W. Hussain, Y. Xu, and Y. Yin, “Collaborative Learning-Based 

Industrial IoT API Recommendation for Software-Defined Devices: The Implicit Knowledge 

Discovery Perspective,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 

6, no. 1, pp. 66–76, Feb. 2022, doi: https://doi.org/10.1109/TETCI.2020.3023155. 

[40] H. Gao, Y. Zhang, H. Miao, R. J. D. Barroso, and X. Yang, “SDTIOA: Modeling the Timed Privacy 

Requirements of IoT Service Composition: A User Interaction Perspective for Automatic 

Transformation from BPEL to Timed Automata,” Mobile Networks and Applications, vol. 26, no. 6, 

pp. 2272–2297, Nov. 2021, doi: https://doi.org/10.1007/s11036-021-01846-x. 

[41] A. A. Amer, I. E. Talkhan, R. Ahmed, and T. Ismail, “An Optimized Collaborative Scheduling 

Algorithm for Prioritized Tasks with Shared Resources in Mobile-Edge and Cloud Computing 

Systems,” Mobile Networks and Applications, Apr. 2022, doi: https://doi.org/10.1007/s11036-022-

01974-y. 

[42] X. Ma, H. Xu, H. Gao, and M. Bian, “Real-time Multiple-Workflow Scheduling in Cloud 

Environment,” Research Square, Feb. 2021, Published, doi: 10.21203/rs.3.rs-170491/v1. 

[43] K. Peng, W. Bai, and L. WU, “Passenger Flow Forecast of Railway Station Based on Improved Lstm,” 

2020 2nd International Conference on Advances in Computer Technology, Information Science and 

Communications (CTISC), Mar. 2020, doi: https://doi.org/10.1109/ctisc49998.2020.00033. 

[44] Dedeturk, B.K.: Dataset. 

https://raw.githubusercontent.com/kagandedeturk/TimeSeries/main/Tramvay.csv (accessed May 12, 

2023). 

[45] W. Xu, H. Peng, X. Zeng, F. Zhou, X. Tian, and X. Peng, “A Hybrid Modelling Method for Time 

Series Forecasting Based nn a Linear Regression Model and Deep Learning,” Applied Intelligence, 

vol. 49, no. 8, pp. 3002–3015, Feb. 2019, doi: https://doi.org/10.1007/s10489-019-01426-3. 

[46] Y. Bai et al., “A Comparison of Dimension Reduction Techniques for Support Vector Machine 

Modeling of Multi-Parameter Manufacturing Quality Prediction,” Journal of Intelligent 

Manufacturing, vol. 30, no. 5, pp. 2245–2256, Jan. 2018, doi: https://doi.org/10.1007/s10845-017-

1388-1. 

[47] X. Qiu, L. Zhang, P. Nagaratnam Suganthan, and G. A. J. Amaratunga, “Oblique Random Forest 

Ensemble via Least Square Estimation for Time Series Forecasting,” Information Sciences, vol. 420, 

pp. 249–262, Dec. 2017, doi: https://doi.org/10.1016/j.ins.2017.08.060. 

[48] T. Xiong, Y. Bao, and Z. Hu, “Beyond One-Step-Ahead Forecasting: Evaluation of Alternative Multi-

Step-Ahead Forecasting Models for Crude Oil Prices,” Energy Economics, vol. 40, pp. 405–415, Nov. 

2013, doi: https://doi.org/10.1016/j.eneco.2013.07.028. 

[49] H. I. Kazıcı, S. Kosunalp, and M. Arucu, “Its-Pro-Flow: A New Enhanced Short-Term Traffıc Flow 

Prediction For Intelligent Transportation Systems,” Scientific Journal of Silesian University of 

Technology. Series Transport, vol. 120, pp. 117–136, Sep. 2023, doi: 10.20858/sjsutst.2023.120.8.  

https://doi.org/10.1007/s11036-022-01974-y
https://doi.org/10.1007/s11036-022-01974-y
https://doi.org/10.1109/ctisc49998.2020.00033
https://doi.org/10.1016/j.eneco.2013.07.028

