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Abstract 

Let 𝑆 be a numerical semigroup. The catenary degree of an element 𝑠 in 𝑆 is a non-

negative integer used to measure the distance between factorizations of 𝑠. The 

catenary degree of the numerical semigroup 𝑆 is obtained at the maximum catenary 

degree of its elements. The maximum catenary degree of 𝑆 is attained via Betti 

elements of 𝑆 with complex properties. The Betti elements of 𝑆 can be obtained from 

all minimal presentations of 𝑆. A presentation for 𝑆 is a system of generators of the 

kernel congruence of the special factorization homomorphism. A presentation is 

minimal if it can not be converted to another presentation, that is, any of its proper 

subsets is no longer a presentation. The Delta set of 𝑆 is a factorization invariant 

measuring the complexity of sets of the factorization lengths for the elements in 𝑆. 

In this study, we will mainly express the given above invariants of a special pseudo-

symmetric numerical semigroup family in terms of its generators. 

 

 
1. Introduction 

 

There are many recent publications studying 

invariants of non-unique factorizations for 

finitely generated cancellative monoids. Many of 

these are particularly focused on numerical 

semigroups. Numerical semigroups provide 

particularly specific settings for studying these 

decomposition problems. One motivation for 

studying the factorization theory of numerical 

semigroups comes from its associated numerical 

semigroup rings. These rings usually give 

concrete examples of more general problems in 

commutative algebra [11] 

The origin of factorization theory is to 

study the decomposition of natural numbers into 

their irreducible divisors. In this multiplicative 

monoid, the Fundamental Theorem of Arithmetic 

guarantees that such a decomposition is unique. 

By the Fundamental Theorem of Arithmetic, 

every positive integer greater than 1 has a prime 

factorization. Just as prime numbers are 

components that make up the natural number 

system using multiplication, they are generators 
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to the components of a numerical monoid. Unlike 

factorization in ℕ0, factorization in numerical 

semigroup may not be unique (where ℕ0 is the set 

of non-negative integers)[19]. Some of the 

factorization invariants are length sets, delta sets 

and catenary degrees.  

The catenary degree of the element of a 

numerical semigroup, which is a factorization 

invariant, defines the relationships between its 

different irreducible factorizations of the element. 

The catenary degree of the numerical semigroup 

is  defined as the least upper bound of all catenary 

degrees of the elements in the numerical 

semigroup.  

Calculating the Betti elements of a 

numerical semigroup is both complicated and 

difficult. It is well known that with the help of 

Betti elements, the maximum catenary degree of 

the numerical semigroup can be reached. 

Moreover, the numerical semigroup with 

embedding dimension three has at most three 

Betti elements [6]. 

Delta sets are also defined the sets of the 

minimum distances between any two 
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factorizations with consecutive lengths. Although 

many research has been done on this problem, it 

is not an easy task to calculate the delta sets for a 

given numerical semigroup. Geroldinger 

presented the first results on Delta sets in [10]. 

Delta sets on numerical semigroups have been 

studied extensively in [3], [4], [5]. Also, the Delta 

set of monoids can be calculated using Euclid’s 

greatest common divisor algorithm [8]. 

The structure of this paper is arranged as 

follows. In Section 2, we gather the background 

of numerical semigroups, necessary definitions, 

and notations that we use in the latter sections. In 

section 3, we obtained the formulas and the 

connections representing the Delta set, Betti 

elements, catenary degrees, graphs, and minimal 

presentation of the pseudo-symmetric numerical 

semigroup family. 

 

2. Material and Method 

 

Let ℕ = {1,2,3, ⋯ } be the set of positive integers 

and let ℕ0 = {0,1,2,3, ⋯ } be the set of non-

negative integers. If 𝑆 is an additive submonoid 

of ℕ0, 𝑆 is called a numerical monoid. We say 

that the integers {𝑚1, 𝑚2, ⋯ , 𝑚𝑝}  generate 𝑆 if 

𝑠 = 𝑘1𝑚1 + 𝑘2𝑚2 + ⋯ + 𝑘𝑝𝑚𝑝 =

∑ 𝑘𝑖𝑚𝑖
𝑝
𝑖=1 (𝑘𝑖 ∈ ℕ0, 𝑖 = 1,2, ⋯ , 𝑝) for 𝑠 ∈ 𝑆, we 

denote it by  𝑆 =< 𝑚1, 𝑚2, ⋯ , 𝑚𝑝 >.  In terms of 

cardinality and set inclusion such a minimal set is 

the minimal generating set and it is unique. Thus, 

we assume that 𝑚1 < 𝑚2 <. . . < 𝑚𝑝.  

A numerical monoid 𝑆 =
〈𝑚1, 𝑚2, ⋯ , 𝑚𝑝 〉 is primitive whenever 

𝑔𝑐𝑑(𝑚1, 𝑚2, ⋯ , 𝑚𝑝)  =  1 (where 𝑔𝑐𝑑(𝑎, 𝑏) 

denotes the greatest common divisor of integer 𝑎 

and 𝑏).  

The integer 𝑝 is called the embedding 

dimension of S, denoted by 𝑒(𝑆). Also, the 

integer 𝑚𝑖𝑛(𝑆\{0}) = 𝑚1 𝑖s called the 

multiplicity of 𝑆, denoted by 𝑚(𝑆). We know that 

𝑒(𝑆) ≤ 𝑚(𝑆). If 𝑒(𝑆) = 𝑚(𝑆), 𝑆 is said to have 

maximal embedding dimension. 

If a non-empty subset 𝑆 of ℕ0 satisfy the 

following three conditions, 𝑆 is called a 

numerical semigroup. 

 

1. 0 ∈ 𝑆.  

2. ∀𝑠1, 𝑠 2 ∈ 𝑆, 𝑠1 +  𝑠 2 ∈ 𝑆. 
3. #(ℕ0\𝑆) < ∞ (where #(𝐴) denotes the 

number of elements in the set A) 

 

Namely, a numerical semigroup is a submonoid 

of (ℕ0,+) satisfying the third condition. 

A numerical semigroup 𝑆 is said to be 

proper if 𝑆 ≠ ℕ0. Let 𝑆 be a proper numerical 

semigroup. We denote the complement of 𝑆 in ℕ0 

by 𝐺(𝑆). The elements of 𝐺(𝑆) are called gaps of 

𝑆. The genus of 𝑆 is the number of gaps of 𝑆, 

denoted by 𝑔(𝑆). 𝐹(𝑆) =  𝑚𝑎𝑥(ℤ\𝑆) is the 

Frobenius number of 𝑆. Note that 𝐹(ℕ0 )  =  −1. 

Henceforth, all numerical sets are proper. 

Recall that a numerical semigroup 𝑆 is 

symmetric if 𝐹(𝑆) is odd and 𝑥 ∈  ℤ \ 𝑆 ⇒
𝐹(𝑆)  −  𝑥 ∈  𝑆, and pseudo- symmetric if 𝐹(𝑆) 

is even and 𝑥 ∈  ℤ \ 𝑆 ⇒  𝑥 =  𝐹(𝑆) 2⁄  or 

𝐹(𝑆)  −  𝑥 ∈  𝑆. 
For a numerical semigroup 𝑆 and 𝑠 ∈

 𝑆\{0}, the Apéry set of 𝑆 with respect to s is 

defined by 𝐴𝑝(𝑆, 𝑠) = {𝑥 ∈ 𝑆|𝑥 −  𝑠 ∉  𝑆}. It is 

well known that 𝐴𝑝(𝑆, 𝑠)  =  {𝑤0 =
 0, 𝑤1, ⋯ , 𝑤𝑠−1} and 𝑤𝑖  =  𝑚𝑖𝑛{𝑥 ∈  𝑆: 𝑥 ≡
 𝑖(𝑚𝑜𝑑𝑠)} for 𝑖 =  {0,1, … , 𝑠 −  1}. 

Researchers can review the definitions and results 

given below in more detail in [1], [17]. 

Let 𝑆 = 〈𝑚1, 𝑚2, ⋯ , 𝑚𝑝 〉. The set of 

factorizations of 𝑠 ∈  𝑆 is defined by 

 

𝑍(𝑠) = {(𝛼1, 𝛼2, ⋯ , 𝛼𝑝)

∈ ℕ0
𝑝|𝛼1𝑚1 + 𝛼2𝑚2 + ⋯

+ 𝛼𝑝𝑚𝑝 = 𝑠}. 

 

If a factorization has a positive entry in 

the 𝑝-tuple, the element can be said to be 

supported on the component corresponding to the 

generator. The length of 𝛼 = {𝛼1, 𝛼2, ⋯ , 𝛼𝑝} ∈

𝑍(𝑠) is |𝛼| = 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑝. The length set 

of 𝑠 is expressed by 𝐿(𝑠)  =  { |𝛼| | 𝛼 ∈  𝑍(𝑠)}. 
Fix a numerical semigroup 𝑆 =

⟨𝑚1, 𝑚2, ⋯ , 𝑚𝑝⟩, and fix 𝑠 ∈  𝑆. Writing 𝐿(𝑠)  =

 {ℓ 1 < · · · <  ℓ𝑝}, the delta set of 𝑠 is the set 

∆𝑆(𝑠)  =  {ℓ 𝑖 −   ℓ𝑖−1| 2 ≤  𝑖 ≤  𝑝 } of 

successive differences of factorization lengths of 

s, and ∆(𝑆) = ⋃ ∆𝑆(𝑠)𝑠∈𝑆 . For 𝛼 =

(𝑥1, 𝑥2, ⋯ , 𝑥𝑝) ∈ ℕ0
𝑝 and 𝛽 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑝) ∈

ℕ0
𝑝, the greatest common divisor of 𝛼 and 𝛽 is 

𝑔𝑐𝑑(𝛼, 𝛽) = (𝑚𝑖𝑛(𝑥1, 𝑦1) , ⋯ , 𝑚𝑖𝑛(𝑥𝑝, 𝑦𝑝)) ∈

ℕ0
𝑝. The distance between 𝛼 and 𝛽 is defined 

as 𝑑(𝛼, 𝛽) = 𝑚𝑎𝑥{|𝛼 − 𝑔𝑐𝑑(𝛼, 𝛽)|, |𝛽 −
𝑔𝑐𝑑(𝛼, 𝛽)|}. 

Given 𝑥, 𝑦 ∈  𝑍(𝑠) and 𝑀 ≥  1, an 𝑀-

chain from 𝑥 to 𝑦 is a sequence 𝑥1, 𝑥2, ⋯ , 𝑥𝑝 ∈

𝑍(𝑠) such that 𝑥1 = 𝑥, 𝑥2, ⋯ , 𝑥𝑝 = 𝑦, and 

𝑑(𝑥𝑗, 𝑥𝑗+1) ≤ 𝑀 for every 𝑗 ∈ {1,2, ⋯ , 𝑖 − 1}. 

The catenary degree of  𝑠 ∈  𝑆 , 𝑐( 𝑠)  is the 

minimal 𝑀 ∈ ℕ0 ∪ {∞} such that for any two 
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factorizations 𝑥, 𝑦 ∈  𝑍(𝑠) there is an 𝑀-chain 

from 𝑥 to 𝑦. The catenary degree of 𝑆, denoted by 

𝐶(𝑆), is 𝐶(𝑆)  =  𝑠𝑢𝑝{𝑐(𝑠) | 𝑠 ∈  𝑆}. 
Let 𝑆 = ⟨𝑚1, 𝑚2, ⋯ , 𝑚𝑝⟩ and 𝑠 ∈  𝑆\

{0}. Consider the graph 𝐺𝑠 with vertex set given 

by its set of factorizations 𝑍(𝑠) and an edge 

connecting 𝑎, 𝑏 ∈  𝑍(𝑠) if 𝑎 and 𝑏 have disjoint 

support as vectors. That is, 𝑎 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑝)

 and 𝑏 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑝) are adjacent in 𝐺𝑠 if for 

all 𝑖, 𝑥𝑖 and 𝑦𝑖 are never both non-zero. For each 

𝑠 ∈  𝑆\{0}, consider the graph 𝐺𝑠with vertex set 

𝑍(𝑠),  where if 𝑔𝑐𝑑(𝑎, 𝑏) ≠ 0, then two vertices 

𝑎, 𝑏 ∈  𝑍(𝑠) share an edge. An element 𝑠 ∈  𝑆 is 

called a Betti element if 𝐺𝑠 is disconnected. The 

set of Betti elements of 𝑆 is denoted by 𝐵𝑒𝑡𝑡𝑖(𝑆). 
Namely, the set of Betti elements of S is 

𝐵𝑒𝑡𝑡𝑖(𝑆) = {𝑠 ∈ 𝑆|𝐺𝑠 is disconnected} 

Calculating the Betti elements of a 

numerical semigroup is quite complex. The 

maximum catenary degree of the numerical 

semigroup is achieved with the help of the Betti 

elements of it. It is also known that numerical 

semigroups with an embedding dimension three 

have at most three Betti elements [1], [2], [7], 

[15]. 

Let 𝛿 be a congruence on 

𝐹𝑟𝑒𝑒(𝑥1, 𝑥2, ⋯ , 𝑥𝑝) and 𝜌 be a system of 

generators of 𝛿. If the cardinality of 𝜌 is the 

smallest in cardinalities of systems of generators 

of δ, then 𝜌 is the minimum relation. Let 

𝑆=〈𝑚1, 𝑚2, ⋯ , 𝑚𝑝〉 and let  𝐴 = {𝛼1, 𝛼2, ⋯ , 𝛼𝑝}  

with 𝛼𝑖 ≠ 𝛼𝑗  for all 𝑖 ≠ 𝑗. If 𝜌 is a minimal 

relation of the kernel congruence of 

𝜑: 𝐹𝑟𝑒𝑒(𝛼1, 𝛼2, ⋯ , 𝛼𝑝) → 𝑆, 𝜑(𝛼1𝑥1 + 𝛼2𝑥2 +

⋯ + 𝛼𝑝𝑥𝑝) = 𝑥1𝑚1 + 𝑥2𝑚2 + ⋯ + 𝑥𝑝𝑚𝑝, then 

𝜌 is called a minimal presentation. 

𝛿 is used to indicate the kernel 

congruence of φ.  The expression set of 𝑠 ∈ 𝑆 is 

defined as follows: 

 

𝑍(𝑠) = 𝜑−1(𝑠) = {𝛼1𝑥1 + 𝛼2𝑥2 + ⋯

+ 𝛼𝑝𝑥𝑝|𝑥1𝑚1 + 𝑥2𝑚2 + ⋯

+ 𝑥𝑝𝑚𝑝 = 𝑠}. 

 

For 𝑥 = 𝛼1𝑥1 + 𝛼2𝑥2 + ⋯ + 𝛼𝑝𝑥𝑝 ∈

𝐹𝑟𝑒𝑒(𝛼1, 𝛼2, ⋯ , 𝛼𝑝),  𝑦 = 𝛼1𝑦1 + 𝛼2𝑦2 + ⋯ +

𝛼𝑝𝑦𝑝 ∈ 𝐹𝑟𝑒𝑒(𝛼1, 𝛼2, ⋯ , 𝛼𝑝). Let the dot product 

of 𝑥 and 𝑦 be defined as 𝑥 ∙ 𝑦 = 𝑥1𝑦1 + 𝑥2𝑦2 +

⋯ +𝑥𝑝𝑦𝑝. For 𝑥, 𝑦 ∈ 𝐹𝑟𝑒𝑒(𝛼1, 𝛼2, ⋯ , 𝛼𝑝) , 𝑥𝑅𝑦 

if 𝑥 = 𝑦 = 0 or 𝑛1, ⋯ 𝑛𝑙 ∈ 𝑍(𝑠) for some 𝑠 ∈ 𝑆 

such that 𝑛1 = 𝑥, 𝑛𝑙 = 𝑦 and 𝑛𝑖 ∙ 𝑛𝑖+1 for all 𝑖 ∈
{1, ⋯ , 𝑙 − 1}. It can be easily seen that 𝑅 has an 

equivalence relation on 𝑍(𝑠). The element of 

𝑍(𝑠) 𝑅⁄  are called 𝑅-classes. It is known that 

every finitely generated semigroup  𝑆 has a finite 

minimal presentation and that all minimal 

presentations of 𝑆 have equal cardinality. 

A graph 𝐺 = (𝑉, 𝐸) consists of a set of 

objects 𝑉 called vertices, and another set 𝐸, 

whose elements are called edges, such that edge 

{𝑢, 𝑣}  is identified with an unordered pair by 𝑢𝑣̅̅̅̅ , 

where 𝐸 ⊆ {{𝑢, 𝑣}|𝑢, 𝑣 ∈  𝑉, 𝑢 ≠  𝑣}. A path of 

length 𝑚 is a sequence of edges of the form 

𝑣1𝑣2̅̅ ̅̅ ̅̅ , 𝑣2𝑣3̅̅ ̅̅ ̅̅ , ⋯ , 𝑣𝑚𝑣𝑚+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. A graph 𝐺 = (𝑉, 𝐸) is 

said to be connected if there is at least one path 

every pair vertices in 𝐺 = (𝑉, 𝐸). Otherwise, 𝐺 =
(𝑉, 𝐸) is disconnected. A connected graph with 

𝑚 vertices includes in least 𝑚 −  1 edges. Such 

connected graph is called a tree [14]. 

A subgraph 𝐺′ =  (𝑉′, 𝐸′) of a graph 

𝐺 =  (𝑉, 𝐸) is a graph whose vertex set V' is a 

subset of the vertex set 𝑉, that is 𝑉′ ⊆  𝑉, and 

whose edge set 𝐸′  is a subset of the edge set 𝐸 

that is 𝐸′ ⊆  𝐸. If 𝐺 is a connected graph on 𝑚 

vertices, a generating tree for 𝐺 is a subgraph of 

𝐺 that is a tree on 𝑚 vertices. 

Let 𝑋≠ ∅, 𝛾 a binary relation of 𝑋 and 

𝑃 =  {𝑃1, … , 𝑃𝑟} a partition of  𝑋. If there exists 

𝑥 ∈ 𝑃 and 𝑦 ∈  𝑃𝑗 such that (𝑥, 𝑦)  ∈  𝛾 ∪ 𝛾−1,  

𝐺𝛾 = (𝑃, 𝐸) is a graph associated to 𝛾 in 

connection with the partition 𝑃 where 𝑃𝑖𝑃𝑗 with 

𝑖 ≠ 𝑗. 

Let 𝑆 = ⟨𝑚1, 𝑚2, ⋯ , 𝑚𝑝⟩ and  𝑅 be an 

equivalence binary relation on 𝑍(𝑠) for 𝑠 ∈ 𝑆. 

And let 𝑠 ∈ 𝑆 and 𝑃1, … , 𝑃𝑘  be different 

equivalence classes of 𝑅 contained in 𝑍(s) for 𝑖 ∈
{1, ⋯ , 𝑘}.  

𝐴𝑖 = {𝑚𝑗|𝑥𝑗 ≤ 𝑥 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑥 ∈ 𝑋𝑖} 

The set of vertices of the different 

connected components of 𝐺𝑠 is included in these 

sets. To show that we first need to prove that 

{𝐴1, … , 𝐴𝑘} is a partition of 𝑉𝑠. 

For 𝑠 ∈  𝑆 define the graph 𝐺𝑠 =
(𝑉𝑠, 𝐸𝑠), as 𝑉𝑠 = {𝑚𝑖 ∈ {𝑚1, 𝑚2, ⋯ , 𝑚𝑝}|𝑠 −

𝑚𝑖 ∈ 𝑆} and 𝐸𝑠 = {𝑚𝑖𝑚𝑗|𝑠 − (𝑚𝑖 + 𝑚𝑗) ∈

𝑆, 𝑖 ≠ 𝑗}. 

 

3. Results and Discussion 

 

Studies on Frobenius number, gaps and some 

properties of this numerical semigroup are 

included in [12], [13]. Also, in this section we 

study on pseudo-symmetric numerical 

semigroups of the form  𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > 

for 3 ∤ 𝑠 and 𝑠 ∈ ℕ. We will obtain here some 
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invariants of such numerical semigroups. When 

𝑆 = 〈𝑚1, 𝑚2, 𝑚3〉 is a numerical semigroup, for 

𝑖 ∈ {1, 2, 3} 

 

𝑐𝑖 = 𝑚𝑖𝑛{𝑘 ∈ ℕ|𝑘𝑚𝑖 ∈ 〈{𝑚1, 𝑚2, 𝑚3}\{𝑚𝑖}〉} 

 

and there exist non-negative integers 𝑟𝑖𝑗, 𝑟𝑖𝑘 for 

{𝑖, 𝑗, 𝑘} = {1,2,3} such that 𝑐𝑖𝑚𝑖 = 𝑟𝑖𝑗𝑚𝑗 +

𝑟𝑖𝑘𝑚𝑘. 
 

Proposition 1. ([18], Proposition 2.13) Let 

𝑚1,𝑚2 ∈ ℕ with 𝑔𝑐𝑑( 𝑚1, 𝑚2)  =1. There are 

the following equations: 

 

1) 𝐹(⟨ 𝑚1, 𝑚2⟩ )  = 𝑚1𝑚2 −  𝑚1 − 𝑚2. 

2) 𝑔( ⟨ 𝑚1, 𝑚2⟩)  =
𝑚1𝑚2− 𝑚1−𝑚2+1

2
. 

 

Proposition 2. ([19], Proposition 4.1) Let 𝑆 =
 ⟨𝑚1, 𝑚2, 𝑚3⟩ be a numerical semigroup 

minimally generated. An element 𝛽 ∈  𝑆 is a Betti 

element if for some 𝑖 ∈  {1, 2, 3} 𝛽𝑖 =  𝑐𝑖𝑚𝑖 

where 𝑐𝑖 = 𝑚𝑖𝑛{𝑘 ∈ ℕ|𝑘𝑚𝑖 ∈ 〈{𝑚1, 𝑚2, 𝑚3}\
{𝑚𝑖}〉}. 

 

Lemma 3. [1], [2], [15]  For any finitely 

generated monoid 𝑆, we have 

 

𝑐(𝑆)  =  𝑚𝑎𝑥 𝐶(𝑆)  =  𝑚𝑎𝑥{𝑐(𝑏) ∶  𝑏 
∈  𝐵𝑒𝑡𝑡𝑖(𝑆)} 

 

and 

 

𝑚𝑖𝑛 𝐶(𝑆)  =  𝑚𝑖𝑛{𝑐(𝑏) ∶  𝑏 ∈  𝐵𝑒𝑡𝑡𝑖(𝑆)}.  
 

Then 

 

𝑐(𝑆) = 𝑚𝑎𝑥{𝑐(𝛽)|𝛽 ∈ 𝐵𝑒𝑡𝑡𝑖(𝑆)}. 
 

Lemma 4. ([18], Theorem 8.17) Let 𝑆 be a 

numerical semigroup and let 𝑠 ∈  𝑆\{0}. The 

number of connected components of 𝐺𝑠 is equal 

to the number of 𝑅-classes in 𝑍( 𝑠). 
 

Proposition 5. ([18], Proposition 31.) Let 𝑆 =
〈𝑚1, 𝑚2, . . . , 𝑚𝑝 〉 be a numerical semigroup. 𝑆 is 

a numerical semigroup with maximal embedding 

dimension if and only if 𝐴𝑝( 𝑆, 𝑚1) =

{0, 𝑚2, ⋯ , 𝑚𝑝}. 

 

Proposition 6. ([18], Theorem 8.19) Let 𝑆 =
⟨𝑚1, 𝑚2, ⋯ , 𝑚𝑝⟩ be a numerical semigroup and 

𝑠 ∈ 𝑆\{0}. If 𝐺𝑠 is disconnected, then 𝑠 =  𝑤 +

𝑚𝑗 with the nonzero 𝑤 ∈ 𝐴𝑝( 𝑆, 𝑚1)  for every 

𝑗 ∈ {2, . . . , 𝑒}. 
 

Lemma 7. ([16], Theorem 7;[18], Lemma 4.27) 

The following conditions are equivalent. 

 

1. 𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > for 3 ∤ 𝑠 and 

𝑠 ∈ ℕ . 
2. S is a pseudo-symmetric numerical 

semigroup with maximal embedding 

dimension 3 

 

Theorem 8. The set of Betti elements of the 

pseudo-symmetric numerical semigroup 𝑆 =<
3,3 + 𝑠, 3 + 2𝑠 > with 3 ∤ 𝑠 and 𝑠 ∈ ℕ is the set 

𝐵𝑒𝑡𝑡𝑖(𝑆) = {6 + 2𝑠, 6 + 3𝑠, 6 + 4𝑠}. 

 

Proof. Let 𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > for 3 ∤ 𝑠 and 

𝑠 ∈ ℕ. Then  

 

𝑐1 = 𝑚𝑖𝑛{𝑘 ∈ ℕ|3𝑘 ∈< 3 + 𝑠, 3 + 2𝑠 >} 

    = 𝑚𝑖𝑛{𝑘 ∈ ℕ|3𝑘

∈ {0,3 + 𝑠, 6 + 2𝑠, 3(2 + 𝑠) , 6

+ 4𝑠, . . . }} 

    = 2 + 𝑠 

𝑐2 = 𝑚𝑖𝑛{𝑘 ∈ ℕ|𝑘(3 + 𝑠) ∈< 3,3 + 2𝑠 >} 

   = 𝑚𝑖𝑛{𝑘 ∈ ℕ|𝑘(3 + 𝑠)

∈ {0,3,6, . . . ,3

+ 2𝑠, 2(3 + 𝑠) , 9 + 2𝑠, . . . }} 

   = 2 

𝑐3 = 𝑚𝑖𝑛{𝑘 ∈ ℕ|𝑘(3 + 2𝑠) ∈< 3,3 + 𝑠 >} 

     = 𝑚𝑖𝑛{𝑘 ∈ ℕ|𝑘(3 + 2𝑠)

∈ {0,3,3 + 𝑠, 6,6 + 𝑠, 9,6

+ 2𝑠, 9 + 𝑠, … , 2(3 + 2𝑠) , … }} 

    = 2 

 

(Note that the Frobenius number of  𝐴 =
〈3,3 + 𝑠〉 is 𝐹(𝐴) = 3 + 2𝑠  by Proposition 1. So 

𝑘 = 2, .) 

From Proposition 2, the Betti elements of 𝑆 are 

 

𝛽1 = 𝑐1 ⋅ 𝑚1 = (2 + 𝑠) ⋅ 3 = 6 + 3𝑠, 
𝛽2 = 𝑐2 ⋅ 𝑚2 = 2 ⋅ (3 + 𝑠) = 6 + 2𝑠, 
𝛽3 = 𝑐3 ⋅ 𝑚3 = 2 ⋅ (3 + 2𝑠) = 6 + 4𝑠, 

 

and the set of Betti elements of S is 

 

𝐵𝑒𝑡𝑡𝑖(𝑆) = {6 + 2𝑠, 6 + 3𝑠, 6 + 4𝑠}. 

 

Example 9. Let us consider the set 𝑆 in Theorem 

8.  If 𝑠 = 5, then 𝑆 =< 3,8,13 >. Let's find the 

Betti elements of the pseudo-symmetric 
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numerical semigroup 𝑆. First, let's find the 

numbers 𝑐𝑖 for 𝑖 ∈ {1, 2, 3}, 
 

𝑐1 = 𝑚𝑖𝑛{𝑘 ∈ ℕ|3𝑘 ∈< 8,13 >} 

    = 𝑚𝑖𝑛{𝑘 ∈ ℕ|3𝑘 ∈ {0,8,13,16, 21 , . . . }} 

    = 7 
 𝑐2 = 𝑚𝑖𝑛{𝑘 ∈ ℕ|8𝑘 ∈< 3,13 >}

= 𝑚𝑖𝑛{𝑘

∈ ℕ|8𝑘

∈ {0,3,6,9,12,13,15, 16 , . . . }} 

      = 2 

                  𝑐3 = 𝑚𝑖𝑛{𝑘 ∈ ℕ|13𝑘 ∈< 3,8 >}  =
𝑚𝑖𝑛{𝑘 ∈ ℕ|13𝑘 ∈
{0,3,6,8,9,11,12,14,15,16,17,    

                          8,20,21,22,24,25, 26 , … }} = 2 

 

From Proposition 2, the Betti elements of 𝑆 

 
𝛽1 = 𝑐1. 𝑛1 = 7.3 = 21
𝛽2 = 𝑐2. 𝑛2 = 2.8 = 16
𝛽3 = 𝑐3. 𝑛3 = 2.13 = 26

} ⇒ 𝐵𝑒𝑡𝑡𝑖(𝑆)

= {16,21,26} 

 

From Theorem 8, The set of Betti elements of 𝑆 

is 𝐵𝑒𝑡𝑡𝑖(𝑆) = {6 + 2.5,6 + 3.5,6 + 4.5} =
{16,21,26}. 

 

Theorem 10. The catenary degree of the pseudo-

symmetric numerical semigroup 𝑆 =< 3,3 +
𝑠, 3 + 2𝑠 > with 3 ∤ 𝑠 and 𝑠 ∈ ℕ is 𝑐(𝑆) = 𝑠 +
2. 

 

Proof. Let 𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > for 3 ∤ 𝑠 and 

𝑠 ∈ ℕ. Firstly, we will find the factorizations of 

Betti elements of 𝑆.  

 

• We write 𝛽1 = 6 + 2𝑠 = 3𝑥1 + (3 +
𝑠)𝑥2 + (3 + 2𝑠)𝑥3 (𝑥1, 𝑥2, 𝑥3 ∈ ℕ0) by 

definition the factorizations. In this case, 

the solution of the linear equation is 

found as (0,2,0)  and  (1,0,1). So, 

𝑍(𝛽1) = 𝑍(6 + 2𝑠) =
{(0,2,0), (1,0,1)}. 

• We write 𝛽2 = 6 + 3𝑠 = 3𝑥1 + (3 +
𝑠)𝑥2 + (3 + 2𝑠)𝑥3 (𝑥1, 𝑥2, 𝑥3 ∈ ℕ0) by 

definition the factorizations. In this case, 

the solution of the linear equation is 

found as (𝑠 + 2,0,0) and (0,1,1). So, 

𝑍(𝛽2) = 𝑍(6 + 3𝑠) = {(𝑠 +
2,0,0), (0,1,1)}. 

• We write 𝛽3 = 6 + 4𝑠 = 3𝑥1 + (3 +
𝑠)𝑥2 + (3 + 2𝑠)𝑥3 (𝑥1, 𝑥2, 𝑥3 ∈ ℕ0) by 

definition the factorizations. In this case, 

the solution of the linear equation is 

found as (𝑠 + 1,1,0)  and  (0,0,2). So, 

𝑍(𝛽3) = 𝑍(6 + 4𝑠) = {(𝑠 +
1,1,0), (0,0,2)}. 

 

So, let's find the distance of the edge between 

these factorizations of Betti elements of S, then 

find the catenary degree of Betti elements of 𝑆. 

 

• 𝑔𝑐𝑑((0,2,0), (1,0,1)) =
(𝑚𝑖𝑛(0,1) , 𝑚𝑖𝑛(2,0) , 𝑚𝑖𝑛(0,1)) =
(0,0,0) 

𝑑((0,2,0), (1,0,1))
= 𝑚𝑎𝑥{|(0,2,0)
− (0,0,0)|, |(1,0,1) − (0,0,0)|}
= 𝑚𝑎𝑥{|(0,2,0)|, |(1,0,1)|}
= 𝑚𝑎𝑥{2,2} = 2 

 

2 

(0,2,0) (1,0,1) 
Figure 1. The catenary graph of 𝛽1 

 

Therefore, if we draw a graph composed of 

these vertices and edges in Figure 3, the catenary 

degree of 𝛽1 = 6 + 2𝑠 is 2. 

 

• 𝑔𝑐𝑑((0,1,1), (2 + 𝑠, 0,0)) =
(𝑚𝑖𝑛(0,2 + 𝑠) , 𝑚𝑖𝑛(1,0) , 𝑚𝑖𝑛(1,0)) =
(0,0,0)  

𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥{|(0,1,1)
− (0,0,0)|, |(2 + 𝑠, 0,0)
− (0,0,0)|}
= 𝑚𝑎𝑥{|(0,1,1)|, |(2 + 𝑠, 0,0)|}
= 𝑚𝑎𝑥{2,2 + 𝑠} = 2 + 𝑠 

 

2 + 𝑠 

(0,1,1) (2 + 𝑠, 0,0) 
Figure 2. The catenary graph of 𝛽2 

 

Therefore, if we draw a graph composed of 

these vertices and edges in Figure 3, the catenary 

degree of 𝛽2 = 6 + 3𝑠 is 2 + 𝑠. 

 

• 𝑔𝑐𝑑((0,0,2), (𝑠 + 1,1,0)) =
(𝑚𝑖𝑛(0, 𝑠 +
1) , 𝑚𝑖𝑛(0,1) , 𝑚𝑖𝑛(2,0)) = (0,0,0) 

𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥{|(0,0,2) − (0,0,0)|, |(𝑠 + 1,1,0)
− (0,0,0)|}
= 𝑚𝑎𝑥{|(0,0,2)|, |(𝑠 + 1,1,0)|}
= 𝑚𝑎𝑥{2,2 + 𝑠} = 2 + 𝑠 

 

2 + 𝑠 

(0,0,2) (𝑠 + 1,1,0) 
Figure 3. The catenary graph of 𝛽3 
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Therefore, if we draw a graph composed 

of these vertices and edges in Figure 3, the 

catenary degree of 𝛽3 = 6 + 4𝑠 is 2 + 𝑠. 

According to Lemma 3,  

 

𝑐(𝑆) = 𝑚𝑎𝑥{𝑐(𝛽)|𝛽 ∈ 𝐵𝑒𝑡𝑡𝑖(𝑆)} =
𝑚𝑎𝑥{2, 𝑠 + 2} = 𝑠 + 2. 

 

Example 11. If 𝑠 = 7, then  𝑆 = 〈3,10,17〉. Let's 

find the catenary degree of the pseudo-symmetric 

numerical semigroup 𝑆. 

Using the GAP package numericalsgps 

[8], the following results are obtained 

 

S: =NumericalSemigroup([3,10,17]); 

<Numerical semigroup with 3 generators> 

gap> BettiElementsOfNumericalSemigroup(se); 

[20, 27, 34] 

 

gap> Factorizations(20,S); 

[[0, 2, 0], [1, 0, 1]] 

gap> Factorizations(27,S); 

[[9, 0, 0], [0, 1, 1]] 

gap> Factorizations(34,S); 

[[8, 1, 0], [0, 0, 2]] 

 

The catenary degree of Betti elements of 𝑆. 

 

• 𝑔𝑐𝑑((0,2,0), (1,0,1)) =
(𝑚𝑖𝑛(0,1) , 𝑚𝑖𝑛(2,0) , 𝑚𝑖𝑛(0,1)) =
(0,0,0) 

𝑑((0,2,0), (1,0,1))
= 𝑚𝑎𝑥{|(0,2,0)
− (0,0,0)|, |(1,0,1) − (0,0,0)|}
= 𝑚𝑎𝑥{|(0,2,0)|, |(1,0,1)|}
= 𝑚𝑎𝑥{2,2} = 2 

𝐶(𝛽1) = 2. 

• 𝑔𝑐𝑑((0,1,1), (9,0,0)) =
(𝑚𝑖𝑛(0,0) , 𝑚𝑖𝑛(1,0) , 𝑚𝑖𝑛(1,0)) =
(0,0,0)  

𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥{|(0,1,1) − (0,0,0)|, |(9,0,0)
− (0,0,0)|}
= 𝑚𝑎𝑥{|(0,1,1)|, |(9,0,0)|}
= 𝑚𝑎𝑥{2,9} = 9 

𝐶(𝛽2) = 9. 

• 𝑔𝑐𝑑((0,0,2), (8,1,0)) =
(𝑚𝑖𝑛(0,8) , 𝑚𝑖𝑛(0,1) , 𝑚𝑖𝑛(2,0)) =
(0,0,0) 

𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥{|(0,0,2) − (0,0,0)|, |(8,1,0)
− (0,0,0)|}
= 𝑚𝑎𝑥{|(0,0,2)|, |(8,1,0)|}
= 𝑚𝑎𝑥{2,9} = 9 

𝐶(𝛽3) = 9. 

 

According to Lemma 3,  

 

𝑐(𝑆) = 𝑚𝑎𝑥{𝑐(𝛽)|𝛽 ∈ 𝐵𝑒𝑡𝑡𝑖(𝑆)} =
𝑚𝑎𝑥{2,9} = 9. 

 

From Theorem 10, the catenary degree of the 

pseudo-symmetric numerical semigroup 𝑆   
𝑐(𝑆) = 𝑠 + 2 = 7 + 2 = 9. 
 

Theorem 12. The graph of the pseudo-symmetric 

numerical semigroup 𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > 

for 3 ∤ 𝑠 and 𝑠 ∈ ℕ is as following: 
 

Table 1. The graph of 𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > 

Graph Connected components Relations Factorizations 

𝐺6+2𝑠 {3,3 + 2𝑠}, {3 + 𝑠} (𝑥1 + 𝑥3, 2𝑥2) (1,0,1), (0,2,0) 

𝐺6+3𝑠 {3}, {3 + 𝑠, 3 + 2𝑠} ((2 + 𝑠)𝑥1), (𝑥2 + 𝑥3) (𝑠 + 2,0,0), (0,1,1) 

𝐺6+4𝑠 {3,3 + 𝑠}, {3 + 2𝑠} ((𝑠 + 1)𝑥1 + 𝑥2), 
(2𝑥3) 

(𝑠 + 1,1,0), (0,0,2) 

Proof. Let 𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > for 3 ∤ 𝑠 and 

𝑠 ∈ ℕ. Then, 𝐴𝑝(𝑆, 3) =  {𝑤0 =  0, 𝑤1, 𝑤2} =
{0,3 + 𝑠, 3 + 2𝑠} from Proposition 5. According 

to Proposition 6, 𝑤 ∈ 𝐴𝑝(𝑆, 3)\{0} = {3 +
𝑠, 3 + 2𝑠} and 𝑠 = 𝑤 + 𝑚𝑗  for 𝑗 ∈ {1,2,3}. Thus, 

 𝑠 ∈ (𝐴𝑝(𝑆, 3)\{0}) + {3 + 𝑠, 3 + 2𝑠} = {3 +
𝑠, 3 + 2𝑠} + {3 + 𝑠, 3 + 2𝑠} = {6 + 2𝑠, 6 +
3𝑠, 6 + 4𝑠} = 𝐵𝑒𝑡𝑡𝑖(𝑆). Table 1 is expressed 

with those obtained. 

Remark 13. Assume now that 𝑆 = ⟨𝑚1, 𝑚2, 𝑚3⟩. 
For {𝑖, 𝑗, 𝑘} = {1,2,3}, let the non-negative 

integers 𝑐𝑖, 𝑟𝑖𝑗 and 𝑟𝑖𝑘 be defined as below. 

 

• If 𝑐1𝑚1 = 𝑐2𝑚2 = 𝑐3𝑚3, then  

{(𝑐1𝑥1, 𝑐2𝑥2), (𝑐1𝑥1, 𝑐3𝑥3)} 

 

is a minimal presentation of 𝑆. 

 

• If 𝑐1𝑚1 ≠ 𝑐2𝑚2 = 𝑐3𝑚3, then 𝑐1𝑚1 =
𝑎𝑚2 + 𝑏𝑚3 with 𝑎, 𝑏 ∈ ℕ.  Thus,  
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{(𝑐1𝑥1, 𝑎𝑥2 + 𝑏𝑥3), (𝑐2𝑥2, 𝑐3𝑥3)} 

 

is a minimal presentation of 𝑆. 

 

• If #({𝑐1𝑥1, 𝑐2𝑥2, 𝑐3𝑥3}) = 3, 

then 𝑐𝑖𝑚𝑖 = 𝑟𝑖𝑗𝑚𝑗 + 𝑟𝑖𝑘𝑚𝑘  for some 

non-negative integers  𝑟𝑖𝑗 and 𝑟𝑖𝑘. Then, 

{(𝑐1𝑥1, 𝑟12𝑥2 + 𝑟13𝑥3), (𝑐2𝑥2, 𝑟21𝑥1

+ 𝑟23𝑥3), (𝑐3𝑥3, 𝑟31𝑥1 + 𝑟32𝑥2)} 

  
is a minimal presentation of 𝑆. 

 

Theorem 14. The minimal presentation of the 

pseudo-symmetric numerical semigroup 𝑆 =<
3,3 + 𝑠, 3 + 2𝑠 > with 3 ∤ 𝑠 and 𝑠 ∈ ℕ is as 

following:  

 
{((𝑠 + 2)𝑥1, 𝑥2 + 𝑥3), (2𝑥2, 𝑥1 + 𝑥3), (2𝑥3, (𝑠

+ 1)𝑥1 + 𝑥2)} 

 

or 

 
{((𝑠
+ 2,0,0), (0,1,1)), ((0,2,0), (1,0,1)), ((0,0,2), (𝑠
+ 1,1,0))}. 
 

Proof. Let 𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > for 3 ∤ 𝑠 and 

𝑠 ∈ ℕ. For 𝑖 ∈ {1,2,3}, the integers 𝑐𝑖 were 

obtained in proof of Theorem 8. For {𝑖, 𝑗, 𝑘} =
{1,2,3}, the non-negative integers are obtained 

according to the definitions of  𝑟𝑖𝑗 and 𝑟𝑖𝑘 as 

follows. 

 

𝑟21 = 𝑟23 = 𝑟32 = 𝑟12 = 𝑟13 = 1 and 𝑟31 = 𝑠 +
1. 

 

By Remark 13, The minimal presentation of 𝑆 is 

 

{((𝑠 + 2)𝑥1, 𝑥2 + 𝑥3), (2𝑥2, 𝑥1 + 𝑥3), (2𝑥3, (𝑠
+ 1)𝑥1 + 𝑥2)} 

 

or 

 

{(((𝑠 +

2),0,0), (0,1,1)), ((0,2,0), (1,0,1)), ((0,0,2), ((𝑠 +

1), 1,0))}. 

 

Proposition 15. ([9], Proposition 2) If the 

numerical semigroup 𝑆 = ⟨𝑚1, 𝑚2𝑚3⟩ is not 

symmetric, then the 𝑟𝑖𝑗 , 𝑟𝑖𝑘 ∈ ℕ are unique for 

{𝑖, 𝑗, 𝑘} = {1,2,3}. In addition,  

 

𝑐𝑖 = 𝑟𝑗𝑖 + 𝑟𝑘𝑖 . 

 

From 𝑚1 < 𝑚2 < 𝑚3  we will get the following 

result. 

 

Lemma 16. ([9], Lemma 3) Let the numbers 𝑐𝑖, 
𝑟𝑗𝑖 and 𝑟𝑖𝑘  be defined as we previously 

determined, 𝑐1 > 𝑟12 + 𝑟13 and 𝑐3 > 𝑟31 + 𝑟32. 

Set 

 

𝛿𝑖 = |𝑐𝑖 − 𝑟𝑗𝑖 − 𝑟𝑖𝑘| 

 

for every {𝑖, 𝑗, 𝑘}  =  {1, 2, 3}.  
 

From Lemma 16, 𝛿1 = 𝑐1 − 𝑟12 − 𝑟13 

and 𝛿3 = 𝑟31 − 𝑟32 − 𝑐3. Also, from Proposition 

15, 𝛿2 = |𝛿1 − 𝛿3|. 
 

Lemma 17. ([9], Lemma 4) Under the standing 

hypothesis, 𝑚𝑖𝑛 𝛥 (𝑆) = 𝑜𝑏𝑒𝑏(𝛿1, 𝛿3) and 

𝑚𝑎𝑥 𝛥 (𝑆) = 𝑚𝑎𝑥{𝛿1, 𝛿3}. 

 

Remark 18. Given Lemma 17, we can think 𝛿1 ≠
𝛿3 because in other case we will write 

𝑚𝑖𝑛 𝛥 (𝑆) = 𝑚𝑎𝑥 𝛥 (𝑆) = 𝛿1 = 𝛿3. And then 

𝛥(𝑆) = {𝛿1}. 

 

Theorem 19. The Delta set of the pseudo-

symmetric numerical semigroup 𝑆 =< 3,3 +
𝑠, 3 + 2𝑠 > with 3 ∤ 𝑠  and 𝑠 ∈ ℕ  is 𝛥(𝑆) = {𝑠}. 

 

Proof. Let 𝑆 =< 3,3 + 𝑠, 3 + 2𝑠 > for 3 ∤ 𝑠 and 

𝑠 ∈ ℕ. For {𝑖, 𝑗, 𝑘} = {1,2,3}, the non-negative 

integers 𝑐𝑖,  𝑟𝑖𝑗 and 𝑟𝑖𝑘 were obtained in proof of 

Theorem 8 and Theorem 14 as follows. 

 

𝑐1 = 2 + 𝑠, 𝑐2 = 𝑐3 = 2, 𝑟21 = 𝑟23 = 𝑟32 =
𝑟12 = 𝑟13 = 1 and 𝑟31 = 𝑠 + 1. 

 

When we write the obtained values into 

the equations in Lemma 16, the following 

equations are obtained.  

 

𝛿1 = |𝑐1 − 𝑟21 − 𝑟13| = |2 + 𝑠 − 1 − 1| = |𝑠|
= 𝑠 

𝛿2 = |𝑐2 − 𝑟12 − 𝑟23| = |2 − 1 − 1| = |0| = 0 
𝛿3 = |𝑐3 − 𝑟31 − 𝑟32| = |2 − 𝑠 − 1 − 1| = |−𝑠|

= 𝑠 

 

Namely, 𝛿1 = 𝛿3 = 𝑠. Taking into account 

Remark 18, 

 

𝛥(𝑆) = {𝛿1} = {𝑠}. 
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Example 20. If 𝑠 = 4 , then 𝑆 =< 3, 7, 11 > .  

Using the GAP package numericalsgps 

[8], the following results are obtained. We show 

how we can compute Betti elements, the catenary 

degree, the minimal presentation, the delta set of 

S, factorizations of elements of S and the graph 

associated to in S using GAP package 

numericalsgps. 

 

gap> se:=NumericalSemigroup([3,7,11]); 

<Numerical semigroup with 3 generators> 

gap> BettiElements(se); 

[14, 18, 22] 

gap> CatenaryDegree(se); 

6 

gap> MinimalPresentation(se); 

[[[0, 2, 0], [1, 0, 1]], [[5, 1, 0], [0, 0, 2]], [[6, 0, 0], 

[0, 1, 1]]] 

gap> DeltaSet(se); 

[4] 

gap> Factorizations(14,se); 

[[0, 2, 0], [1, 0, 1]] 

gap> Factorizations(18,se); 

[[6, 0, 0], [0, 1, 1]] 

gap> Factorizations(22,se); 

[[5, 1, 0], [0, 0, 2]] 

gap> 

GraphAssociatedToElementInNumericalSemigr

oup(14,se); 

[[3, 7, 11], [[3, 11]]] 

gap> 

GraphAssociatedToElementInNumericalSemigr

oup(18,se); 

[[3, 7, 11], [[7, 11]]] 

gap> 

GraphAssociatedToElementInNumericalSemigr

oup(22,se); 

[[3, 7, 11], [[3, 7]]] 

 

Namely, we obtain the set of Betti elements, the 

catenary degree, the minimal presentation and the 

Delta set of 𝑆 from Theorem 8, Theorem 10, 

Theorem 14, Theorem 19. 

 

𝐵𝑒𝑡𝑡𝑖(𝑆) = {6 + 2𝑠, 6 + 3𝑠, 6 + 4𝑠} = {6 + 2 ∙
4,6 + 3 ∙ 4,6 + 4 ∙ 4} = {14,18,22}, 

𝑐(𝑆) = 𝑠 + 2 = 4 + 2 = 6, 

 

The minimal presentation of the pseudo-

symmetric numerical semigroup 𝑆 is  
{((𝑠
+ 2,0,0), (0,1,1)), ((0,2,0), (1,0,1)), ((0,0,2), (𝑠
+ 1,1,0))}
= {((4
+ 2,0,0), (0,1,1)), ((0,2,0), (1,0,1)), ((0,0,2), (4
+ 1,1,0))}
= {((6,0,0), (0,1,1)), ((0,2,0), (1,0,1)), 

((0,0,2), (5,1,0))} 

𝛥(𝑆) = {𝑠} = {4}. 

 

And from Theorem 12, we can construct Table 2 

as follows. 
 

Table 2. The graph of 𝑆 = 〈3,7,11〉 

Graph Connected components Relations Factorizations 

𝐺14 {3,11}, {7} (𝑥1 + 𝑥3, 2𝑥2) (1,0,1), (0,2,0) 

𝐺18 {3}, {7,11} (6𝑥1), (𝑥2 + 𝑥3) (6,0,0), (0,1,1) 

𝐺22 {3,7}, {11} (5𝑥1 + 𝑥2), (2𝑥3) (5,1,0), (0,0,2) 

 

4. Conclusion and Suggestions 

 

This study aims to present the relationship 

between the Delta Set, Betti elements, catenary 

degree, graphs, and minimal representation of the 

family of pseudo-symmetric numerical 

semigroups and their generators. Such numerical 

semigroups are also of great interest in ring 

theory because numerical semigroups have many 

applications in ring theory and algebraic 

geometry via the valuations of one-dimensional 

local Noetherian domains whose value groups are 

numerical semigroups. Therefore, the results in 

this manuscript can be extended and studied by 

ring theory researchers. 
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